Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124610, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852306

RESUMO

Developing rapid tetracycline sensing system is of great significance to monitor the illegal addition to drugs and pollution to food and ecosystem. By loading covalent organic frameworks (COFs) with Eu3+, a new hybridized material (COF@Eu3+) was prepared for tetracycline determination. Based on the Schiff base reaction, the COFs were by synthesized through solvent evaporation in 30 min at room temperature. Thereafter, Eu3+ was modified into COFs to develop the COF@Eu3+ sensing platform by adsorption and coordination. In presence of tetracycline, tetracycline can displace water molecules and coordinate with Eu3+ through the antenna effect. As a result, the red fluorescence of Eu3+ was enhanced by tetracycline with green fluorescence of COF as a reference. The developed ratiometric fluorescence sensor exhibits a linear range of 0.1-20 µM for detecting tetracycline with a detection limit of 30 nM. Integrated with a smartphone, the rapid tetracycline detection can be realized in situ, which is potential for high-throughput screening of tetracycline contaminated samples. Furthermore, the COF@Eu3+ fluorescence sensor has been successfully applied to the detection of tetracycline in traditional Chinese medicine compound preparation with satisfied recoveries. Therefore, a smartphone-assisted device was successfully developed based on Eu3+-functionalized COF, which is an attractive candidate for further applications of fluorescence sensing and visual detection.


Assuntos
Európio , Limite de Detecção , Estruturas Metalorgânicas , Smartphone , Espectrometria de Fluorescência , Tetraciclina , Tetraciclina/análise , Európio/química , Espectrometria de Fluorescência/métodos , Estruturas Metalorgânicas/química , Fluorescência , Corantes Fluorescentes/química
2.
Plant Sci ; 343: 112057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460553

RESUMO

The eukaryotic AGC protein kinase subfamily (protein kinase A/ protein kinase G/ protein kinase C-family) is involved in regulating numerous biological processes across kingdoms, including growth and development, and apoptosis. PDK1(3-phosphoinositide-dependent protein kinase 1) is a conserved serine/threonine kinase in eukaryotes, which is both a member of AGC kinase and a major regulator of many other downstream AGC protein kinase family members. Although extensively investigated in model plant Arabidopsis, detailed reports for tobacco PDK1s have been limited. To better understand the functions of PDK1s in tobacco, CRISPR/CAS9 transgenic lines were generated in tetraploid N. tabacum, cv. Samsun (NN) with 5-7 of the 8 copies of 4 homologous PDK1 genes in tobacco genome (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out. Numerous developmental defects were observed in these NtPDK1a/1b/1c/1d CRISPR/CAS9 lines, including cotyledon fusion leaf shrinkage, uneven distribution of leaf veins, convex veins, root growth retardation, and reduced fertility, all of which reminiscence of impaired polar auxin transport. The severity of these defects was correlated with the number of knocked out alleles of NtPDK1a/1b/1c/1d. Consistent with the observation in Arabidopsis, it was found that the polar auxin transport, and not auxin biosynthesis, was significantly compromised in these knockout lines compared with the wild type tobacco plants. The fact that no homozygous plant with all 8 NtPDK1a/1b/1c/1d alleles being knocked out suggested that knocking out 8 alleles of NtPDK1a/1b/1c/1d could be lethal. In conclusion, our results indicated that NtPDK1s are versatile AGC kinases that participate in regulation of tobacco growth and development via modulating polar auxin transport. Our results also indicated that CRISPR/CAS9 technology is a powerful tool in resolving gene redundancy in polyploidy plants.


Assuntos
Arabidopsis , Nicotiana , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistemas CRISPR-Cas , Proteínas Quinases/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA