Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Differentiation ; 138: 100789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896972

RESUMO

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Assuntos
Trifosfato de Adenosina , Diferenciação Celular , Osteoclastos , Osteoprotegerina , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Trifosfato de Adenosina/metabolismo , Camundongos , Conexina 43/metabolismo , Conexina 43/genética , Fusão Celular , Antígeno CD47/metabolismo , Antígeno CD47/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas do Tecido Nervoso
2.
Am J Physiol Heart Circ Physiol ; 327(2): H533-H544, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995212

RESUMO

The thymus, where T lymphocytes develop and mature, is sensitive to insults such as tissue ischemia or injury. The insults can cause thymic atrophy and compromise T-cell development, potentially impairing adaptive immunity. The objective of this study was to investigate whether myocardial infarction (MI) induces thymic injury to impair T lymphopoiesis and to uncover the underlying mechanisms. When compared with sham controls, MI mice at day 7 post-MI exhibited smaller thymus, lower cellularity, as well as less thymocytes at different developmental stages, indicative of T-lymphopoiesis impairment following MI. Accordingly, the spleen of MI mice has less T cells and recent thymic emigrants (RTEs), implying that the thymus of MI mice releases fewer mature thymocytes than sham controls. Interestingly, the secretory function of splenic T cells was not affected by MI. Further experiments showed that the reduction of thymocytes in MI mice was due to increased thymocyte apoptosis. Removal of adrenal glands by adrenalectomy (ADX) prevented MI-induced thymic injury and dysfunction, whereas corticosterone supplementation in ADX + MI mice reinduced thymic injury and dysfunction, indicating that glucocorticoids mediate thymic damage triggered by MI. Eosinophils play essential roles in thymic regeneration postirradiation, and eosinophil-deficient mice exhibit impaired thymic recovery after sublethal irradiation. Interestingly, the thymus was fully regenerated in both wild-type and eosinophil-deficient mice at day 14 post-MI, suggesting that eosinophils are not critical for thymus regeneration post-MI. In conclusion, our study demonstrates that MI-induced glucocorticoids trigger thymocyte apoptosis and impair T lymphopoiesis, resulting in less mature thymocyte release to the spleen.NEW & NOTEWORTHY The thymus is essential for maintaining whole body T-cell output. Thymic injury can adversely affect T lymphopoiesis and T-cell immune response. This study demonstrates that MI induces thymocyte apoptosis and compromises T lymphopoiesis, resulting in fewer releases of mature thymocytes to the spleen. This process is mediated by glucocorticoids secreted by adrenal glands. Therefore, targeting glucocorticoids represents a novel approach to attenuate post-MI thymic injury.


Assuntos
Adrenalectomia , Apoptose , Linfopoese , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Timo , Animais , Timo/patologia , Timo/imunologia , Timo/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Masculino , Timócitos/metabolismo , Timócitos/patologia , Timócitos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Glucocorticoides/farmacologia , Eosinófilos/metabolismo , Eosinófilos/imunologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Modelos Animais de Doenças , Camundongos , Corticosterona/sangue
3.
J Craniofac Surg ; 35(5): 1549-1551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814063

RESUMO

BACKGROUND: Wide-neck aneurysm embolism is a technically demanding procedure. Stent device deployment is challenging intraoperatively, especially in parent arteries with acute angles. CASE DESCRIPTION: The authors describe the case of a 74-year female with an unruptured right posterior inferior cerebellar artery aneurysm. The acute angle of the arteries proximal to the posterior inferior cerebellar artery complicated the condition, and the distal end of the guidewire failed to enter the posterior inferior cerebellar artery despite several maneuvers. The wide neck of the aneurysm was located in the posterior inferior cerebellar artery, so a stent was needed. The stent was deployed from the left vertebral artery retrograde to the right vertebral artery. CONCLUSIONS: The authors report the successful application of a rare strategy, the radial approach combined with a contralateral vertebral retrograde approach, for stent deployment.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Stents , Artéria Vertebral , Humanos , Feminino , Aneurisma Intracraniano/terapia , Aneurisma Intracraniano/cirurgia , Aneurisma Intracraniano/diagnóstico por imagem , Embolização Terapêutica/métodos , Embolização Terapêutica/instrumentação , Idoso , Artéria Vertebral/diagnóstico por imagem , Artéria Vertebral/cirurgia , Cerebelo/irrigação sanguínea , Angiografia Cerebral
4.
Fa Yi Xue Za Zhi ; 40(2): 154-163, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38847030

RESUMO

OBJECTIVES: To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China, and evaluate its feasibility and reliability. METHODS: The retrospective pelvic CT imaging data of 1 200 samples (600 males and 600 females) aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models. The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries. Using the ResNet34 model, 500 samples of different sexes were randomly selected as training and verification set, the remaining samples were used as testing set. Initialization and transfer learning were used to train images that distinguish sex and left/right site. Mean absolute error (MAE) and root mean square error (RMSE) were used as primary indicators to evaluate the model. RESULTS: Prediction results varied between sexes, with bilateral models outperformed left/right unilateral ones, and transfer learning models showed superior performance over initial models. In the prediction results of bilateral transfer learning models, the male MAE was 7.74 years and RMSE was 9.73 years, the female MAE was 6.27 years and RMSE was 7.82 years, and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years. CONCLUSIONS: The skeletal age estimation model, utilizing ischial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning, can effectively estimate adult ischium age.


Assuntos
Determinação da Idade pelo Esqueleto , Aprendizado Profundo , Imageamento Tridimensional , Ísquio , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Ísquio/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , China , Estudos Retrospectivos , Determinação da Idade pelo Esqueleto/métodos , Idoso , Adulto Jovem , Idoso de 80 Anos ou mais , Reprodutibilidade dos Testes
5.
J Neuroinflammation ; 20(1): 127, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245027

RESUMO

BACKGROUND: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. METHODS: Lung infection in mice was induced by instilling Pseudomonas aeruginosa (PA) intratracheally. We determined bacterial colonization in tissue, microvascular leakage, expression of cytokines and leukocyte infiltration into the brain. RESULTS: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 h and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + CD45+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) and adherens junction (AJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. CONCLUSIONS: Lung bacterial infection is associated with BBB disruption and behavioral changes, which are mediated by systemic cytokine release.


Assuntos
Barreira Hematoencefálica , Pseudomonas aeruginosa , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Pseudomonas aeruginosa/metabolismo , Doenças Neuroinflamatórias , Citocinas/metabolismo , Pulmão , Fator de Necrose Tumoral alfa/metabolismo
6.
Cell Mol Biol Lett ; 28(1): 87, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884867

RESUMO

Mitochondrial transfer regulates intercellular communication, and mitochondria regulate cell metabolism and cell survival. However, the role and mechanism of mitochondrial transfer in Cd-induced nonalcoholic fatty liver disease (NAFLD) are unclear. The present study shows that mitochondria can be transferred between hepatocytes via microtubule-dependent tunneling nanotubes. After Cd treatment, mitochondria exhibit perinuclear aggregation in hepatocytes and blocked intercellular mitochondrial transfer. The different movement directions of mitochondria depend on their interaction with different motor proteins. The results show that Cd destroys the mitochondria-kinesin interaction, thus inhibiting mitochondrial transfer. Moreover, Cd increases the interaction of P62 with Dynactin1, promotes negative mitochondrial transport, and increases intracellular lipid accumulation. Mitochondria and hepatocyte co-culture significantly reduced Cd damage to hepatocytes and lipid accumulation. Thus, Cd blocks intercellular mitochondrial transfer by disrupting the microtubule system, inhibiting mitochondrial positive transport, and promoting their negative transport, thereby promoting the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Cádmio , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Hepatócitos/metabolismo , Lipídeos , Fígado
7.
Ecotoxicol Environ Saf ; 267: 115674, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952295

RESUMO

The incidence of diabetes mellitus (DM) is gradually increasing, making it a widespread global health concern. Cadmium (Cd) is a common toxic heavy metal in the environment, and cadmium exposure may be associated with diabetic nephropathy (DN). However, the mechanism of Cd-induced DN remains unclear. In this study, we aimed to determine the effect of cadmium on diabetic kidney injury and the underlying mechanism in diabetic rats and a renal tubular epithelial cell line (NRK-52E cells). Our results could provide novel insights on the nephrotoxic mechanism of cadmium. HE, PAS, and Masson staining were used to observe pathological renal injury. COL-I, COL-IV, CTSB, and CTSD protein levels were detected by immunohistochemistry and western blotting. Immunofluorescence was used to detect the fluorescence intensity of p62 and LC3 proteins in kidney tissue. TEM was used to observe the ultrastructure of mitochondria and number of autophagosomes. After cadmium exposure, DM rats showed a dramatic decrease in body weight compared to the unexposed DM group. Relative kidney weight showed a contrasting trend after cadmium exposure. Urinary microalbumin/creatinine significantly increased in normal and DM rats after cadmium exposure. However, the trend was clearer in the DM groups than in the control groups. Endogenous creatinine clearance exhibited a contrasting trend. After cadmium exposure in DM rats, MDA content significantly increased and GSH, CAT, SOD, and GSH-PX activation reduced compared to normal controls. Pathological damage was more pronounced, and the expression of autophagy related proteins and apoptosis and fibrosis proteins was significantly higher in vivo and vitro in the cadmium-exposed groups than in unexposed controls. Further, lysosomal protein levels were lower, and ROS content and autophagosome count significantly higher in the cadmium exposed groups compared to the unexposed controls. Therefore, Cadmium exposure aggravates diabetic kidney injury via autophagy inhibition.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Ratos , Cádmio/toxicidade , Creatinina , Autofagia , Rim
8.
Ecotoxicol Environ Saf ; 249: 114465, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321684

RESUMO

Cadmium (Cd) is a heavy metal pollutant in the environment, and the kidney is one of the target organs after Cd exposure. Previous studies have shown that apoptosis and autophagy disorders are the main mechanisms of Cd-induced nephrotoxicity in rats. As a transcription factor that balances cell survival and death, nuclear factor-kappaB (NF-κB) protein plays dual regulatory effects on apoptosis and autophagy in multiple renal diseases. However, the regulatory mechanisms of NF-κB in Cd-induced kidney injury remain unclear. Therefore, the normal rat kidney cell line (NRK-52E cells) was applied to investigate the above questions in this study. Here, we found that Cd promotes the nuclear translocation and activation of NF-κB in a concentration-dependent manner, and activated NF-κB mediates NRK-52E cells survival after Cd exposure. Next, our study elaborated the mechanisms of NF-κB in antagonizing Cd-induced renal cytotoxicity. Inhibition of NF-κB by inhibitor BAY 11-7082 (BAY) and NF-κB p65 siRNA (siNF-κB p65) exacerbate Cd-induced apoptosis and autophagy inhibition, and then aggravate Cd-induced NRK-52E cells injury. Activation of NF-κB by activator phorbol-12-myristate-13-acetate (PMA) alleviates Cd-induced apoptosis and autophagy inhibition, and then attenuates Cd-induced NRK-52E cells injury. In conclusion, Cd exposure promotes the activation of NF-κB, and activated NF-κB mediates the survival of NRK-52E cells after Cd exposure via promoting autophagy and inhibiting apoptosis.


Assuntos
Cádmio , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Cádmio/toxicidade , Rim , Apoptose , Autofagia
9.
Environ Toxicol ; 38(8): 1775-1785, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37022104

RESUMO

Cadmium (Cd) is an environmental heavy metal, and its accumulation is harmful to animal and human health. The cytotoxicity of Cd includes oxidative stress, apoptosis, and mitochondrial histopathological changes. Furthermore, polystyrene (PS) is a kind of microplastic piece derived from biotic and abiotic weathering courses, and has toxicity in various aspects. However, the potential mechanism of action of Cd co-treated with PS is still poorly unclear. The objective of this study was to investigate the effects of PS on Cd-induced histopathological injury of mitochondria in the lung of mice. In this study, the results have showed that Cd could induce the activity of oxidative enzymes of the lung cells in mice, increasing the content of partial microelement and the phosphorylation of inflammatory factor NF-κB p65. Cd further destroys the integrity of mitochondria by increasing the expression of apoptotic protein and blocking the autophagy. In addition, PS solely group aggravated the lung damage in mice, especially mitochondrial toxicity, and played a synergistic effect with Cd in lung injury. However, how PS can augment mitochondrial damage and synergism with Cd in lung of mice requiring further exploration. Therefore, PS was able to exacerbate Cd-induced mitochondrial damage to the lung in mice by blocking autophagy, and was associated with the apoptosis.


Assuntos
Cádmio , Poliestirenos , Humanos , Camundongos , Animais , Cádmio/toxicidade , Poliestirenos/toxicidade , Plásticos/farmacologia , Autofagia , Estresse Oxidativo , Apoptose , Pulmão
10.
Environ Toxicol ; 38(8): 1980-1988, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148155

RESUMO

Cadmium (Cd) can damage bone cells and cause osteoporosis. Osteocytes are the most numerous bone cells and also important target cells for Cd-induced osteotoxic damage. Autophagy plays important role in the progression of osteoporosis. However, osteocyte autophagy in Cd-induced bone injury is not well characterized. Thus, we established a Cd-induced bone injury model in BALB/c mice and a cellular damage model in MLO-Y4 cells. Aqueous Cd exposure for 16 months showed an increase in plasma alkaline phosphatase (ALP) activity and increase in urine calcium (Ca) and phosphorus (P) concentrations in vivo. Moreover, expression level of autophagy-related microtubule-associated protein 1A/1B-light chain 3 II (LC3II) and autophagy-related 5 (ATG5) proteins were induced, and the expression of sequestosome-1 (p62) was reduced, along with Cd-induced trabecular bone damage. In addition, Cd inhibited the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and phosphatidylinositol 3-kinase (PI3K). In vitro, 80 µM Cd concentrations exposure upregulated LC3II protein expression, and downregulated of p62 protein expression. Similarly, we found that treatment with 80 µM Cd resulted in a reduction in the phosphorylation levels of mTOR, AKT, and PI3K. Further experiments revealed that addition of rapamycin, an autophagy inducer, enhanced autophagy and alleviated the Cd-induced damage to MLO-Y4 cells. The findings of our study reveal for the first time that Cd causes damage to both bone and osteocytes, as well as induces autophagy in osteocytes and inhibits PI3K/AKT/mTOR signaling, which could be a protective mechanism against Cd-induced bone injury.


Assuntos
Osteoporose , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Cádmio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Osteócitos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Sirolimo/farmacologia , Mamíferos/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674718

RESUMO

Our previous studies have confirmed that cadmium (Cd) exposure causes hepatotoxicity; it also induces autophagy and blocks the autophagy flux. Therefore, we hypothesized that Cd hepatotoxicity could be alleviated through nutritional intervention. Taurine (Tau) has various biological functions such as acting as an antioxidant, acting as an anti-inflammatory, and stabilizing cell membranes. In order to explore the protective effect and internal mechanism of Tau on Cd-induced hepatotoxicity, normal rat liver cell line BRL3A cells were treated with Cd alone or in combination with Tau to detect cell injury and autophagy-related indexes in this study. We found that Tau can alleviate Cd-induced cell-proliferation decline and morphological changes in the cell. In addition, Tau activates autophagy and alleviates the blockage of Cd-induced autophagy flux. In this process, lysosome acidification and degradation were enhanced, and autophagosomes were further fused with lysosomes. Then, we found that Tau alleviated autophagic flux block by promoting the transfer of membrane fusion proteins STX17 and SNAP29 to autophagosomes and the translocation of VAMP8 to lysosomes, which in turn attenuated the hepatocyte injury induced by Cd exposure. This will further reveal the hepatotoxicity mechanism of Cd and provide the theoretical basis for the prevention and treatment of Cd poisoning.


Assuntos
Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Cádmio/metabolismo , Autofagia , Autofagossomos/metabolismo , Linhagem Celular , Lisossomos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675029

RESUMO

Osteoprotegerin (OPG) is a new member of the tumor necrosis factor (TNF) receptor superfamily, which can inhibit the differentiation and activity of osteoclasts by binding to nuclear factor kappa B receptor activator (RANK) competitively with nuclear factor kappa B receptor activator ligand (RANKL). The previous experiments found that OPG can induce apoptosis of mature osteoclasts in vitro, which can inhibit the activity of mature osteoclasts, thereby exerting its role in protecting bone tissue. In addition, pyroptosis is a new type of cell death that is different from apoptosis. It is unclear whether OPG can induce mature osteoclast pyroptosis and thereby play its role in protecting bone tissue. In this study, the results showed that compared with the control group, the survival rate of osteoclasts in the OPG group was significantly reduced, and the contents of IL-1ß, IL-18, and LDH in the supernatant both increased. Many osteoclast plasma membranes were observed to rupture in bright fields, and OPG induced loss of their morphology. Flow cytometry was used to analyze the pyroptosis rate; OPG significantly increased the osteoclast pyroptosis rate. To further reveal the mechanism of OPG-induced osteoclast pyroptosis, we examined the expression level of pyroptosis-related genes and proteins, and the results found that OPG increased the expression of NLRP3, ASC, caspase-1, and GSDMD-N compared with the control group. In summary, OPG can induce osteoclast pyroptosis, and its mechanism is related to the expression levels of ASC, NLRP3, caspase 1 and GSDMD, which were included in the classical pathway of pyroptosis.


Assuntos
Osteoclastos , Osteoprotegerina , Osteoclastos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , NF-kappa B/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligante RANK/metabolismo
13.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108543

RESUMO

Microplastics have become a new type of environmental pollutant that can accumulate in various tissues and organs of the body and cause chronic damage. In this study, two different size polystyrene microplastics (PS-MPs, 5 µm and 0.5 µm) exposure models were established in mice to investigate the effects of PS-MPs with different particle sizes on oxidative stress in the liver. The results showed that PS-MPs exposure caused a decrease in body weight and liver-to-body weight. The hematoxylin and eosin staining and transmission electron microscopy results showed that exposure to PS-MPs led to the disorganized cellular structure of liver tissue, nuclear crinkling, and mitochondrial vacuolation. The extent of damage in the 5 µm PS-MP exposure group was more extensive when compared with the other group. The evaluation of oxidative-stress-related indicators showed that PS-MPs exposure exacerbated oxidative stress in hepatocytes, especially in the 5 µm PS-MPs group. The expression of oxidative-stress-related proteins sirtuin 3(SIRT3) and superoxide dismutase (SOD2) was significantly reduced, and the reduction was more pronounced in the 5 µm PS-MPs group. In conclusion, PS-MPs exposure led to oxidative stress in mouse hepatocytes and caused more severe damage in the 5 µm PS-MPs group when compared with the 0.5 µm PS-MPs group.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Camundongos , Animais , Poliestirenos/farmacologia , Microplásticos/toxicidade , Plásticos/metabolismo , Estresse Oxidativo , Hepatócitos/metabolismo , Poluentes Químicos da Água/farmacologia
14.
Fa Yi Xue Za Zhi ; 39(1): 27-33, 2023 Feb 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37038852

RESUMO

OBJECTIVES: To examine the reliability and accuracy of Walker's model for estimating the sex of Han adults in western China by using cranium three-dimensional (3D) CT reconstruction, and to study the suitable cranial sex estimation model for Han people in western China. METHODS: A total of 576 cranial CT 3D reconstructed images from Hanzhong Hospital in Shaanxi Province from 2017 to 2021 were collected. These images were divided into the experimental group with 486 samples and the validation group with 90 samples. Walker's model was used by observer 1 to estimate the sex of experimental group samples. The logistic function applicable to Han people in western China was corrected by observer 1. The 90 samples in the validation group were scored and substituted into the modified logistic function to complete the back substitution test by observer 1, 2 and 3. RESULTS: The accuracy of sex estimation of Han adults in western China was 63.2%-77.2% by applying Walker's model. The accuracy of modified logistic function was 82.9%. The accuracy of sex estimation through back substitution test by 3 observers was 75.6%-91.1%, with a Kappa value of 0.689 (P<0.05) for inter-observer consistency and 0.874 (P<0.05) for intra-observer consistency. CONCLUSIONS: There are great differences in bone characteristics among people from different regions. The modified logistic function can achieve higher accuracy in Han adults in western China.


Assuntos
Determinação do Sexo pelo Esqueleto , Humanos , Adulto , Reprodutibilidade dos Testes , Determinação do Sexo pelo Esqueleto/métodos , Antropologia Forense , Crânio/diagnóstico por imagem , Crânio/anatomia & histologia , Imageamento Tridimensional , China , Tomografia Computadorizada por Raios X
15.
Fa Yi Xue Za Zhi ; 39(2): 129-136, 2023 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37277375

RESUMO

OBJECTIVES: To investigate the reliability and accuracy of deep learning technology in automatic sex estimation using the 3D reconstructed images of the computed tomography (CT) from the Chinese Han population. METHODS: The pelvic CT images of 700 individuals (350 males and 350 females) of the Chinese Han population aged 20 to 85 years were collected and reconstructed into 3D virtual skeletal models. The feature region images of the medial aspect of the ischiopubic ramus (MIPR) were intercepted. The Inception v4 was adopted as the image recognition model, and two methods of initial learning and transfer learning were used for training. Eighty percent of the individuals' images were randomly selected as the training and validation dataset, and the remaining were used as the test dataset. The left and right sides of the MIPR images were trained separately and combinedly. Subsequently, the models' performance was evaluated by overall accuracy, female accuracy, male accuracy, etc. RESULTS: When both sides of the MIPR images were trained separately with initial learning, the overall accuracy of the right model was 95.7%, the female accuracy and male accuracy were both 95.7%; the overall accuracy of the left model was 92.1%, the female accuracy was 88.6% and the male accuracy was 95.7%. When the left and right MIPR images were combined to train with initial learning, the overall accuracy of the model was 94.6%, the female accuracy was 92.1% and the male accuracy was 97.1%. When the left and right MIPR images were combined to train with transfer learning, the model achieved an overall accuracy of 95.7%, and the female and male accuracies were both 95.7%. CONCLUSIONS: The use of deep learning model of Inception v4 and transfer learning algorithm to construct a sex estimation model for pelvic MIPR images of Chinese Han population has high accuracy and well generalizability in human remains, which can effectively estimate the sex in adults.


Assuntos
Aprendizado Profundo , Adulto , Feminino , Humanos , Masculino , Imageamento Tridimensional , Pelve , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
16.
Am J Physiol Heart Circ Physiol ; 322(4): H622-H635, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179978

RESUMO

Some patients with myocardial infarction (MI) exhibit lymphopenia, a reduction in blood lymphocyte count. Moreover, lymphopenia inversely correlates with patient prognosis. The objective of this study was to elucidate the underlying mechanisms that cause lymphopenia after MI. Multiparameter flow cytometric analysis demonstrated that MI induced profound B and T lymphopenia in a mouse model, peaking at day 1 post-MI. The finding that non-MI control and MI mice exhibited similar apoptotic rate for blood B and T lymphocytes argues against apoptosis being essential for MI-induced lymphopenia. Interestingly, the bone marrow in day 1 post-MI mice contained more B and T cells but showed less B- and T-cell proliferation compared with day 0 controls. This suggests that blood lymphocytes may travel to the bone marrow after MI. This was confirmed by adoptive transfer experiments demonstrating that MI caused the loss of transferred lymphocytes in the blood, but the accumulation of transferred lymphocytes in the bone marrow. To elucidate the underlying signaling pathways, ß2-adrenergic receptor or sphingosine-1-phosphate receptor type 1 (S1PR1) was pharmacologically blocked, respectively. ß2-receptor inhibition had no significant effect on blood lymphocyte count, whereas S1PR1 blockade aggravated lymphopenia in MI mice. Furthermore, we discovered that MI-induced glucocorticoid release triggered lymphopenia. This was supported by the findings that adrenalectomy (ADX) completely prevented mice from MI-induced lymphopenia, and supplementation with corticosterone in adrenalectomized MI mice reinduced lymphopenia. In conclusion, our study demonstrates that MI-associated lymphopenia involves lymphocyte redistribution from peripheral blood to the bone marrow, which is mediated by glucocorticoids.NEW & NOTEWORTHY Lymphopenia, a reduction in blood lymphocyte count, is known to inversely correlate with the prognosis for patients with myocardial infarction (MI). However, the underlying mechanisms by which cardiac ischemia induces lymphopenia remain elusive. This study provides the first evidence that MI activates the hypothalamic-pituitary-adrenal (HPA) axis to increase glucocorticoid secretion, and elevated circulating glucocorticoids induce blood lymphocytes trafficking to the bone marrow, leading to lymphopenia.


Assuntos
Linfopenia , Infarto do Miocárdio , Animais , Medula Óssea , Humanos , Contagem de Linfócitos , Linfócitos , Linfopenia/induzido quimicamente , Camundongos , Infarto do Miocárdio/complicações
17.
J Surg Res ; 276: 331-339, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35427911

RESUMO

INTRODUCTION: α-Cyperone has anti-inflammatory activities, but its effects on spinal cord injury (SCI) remain obscure. Thus, this study attempts to investigate the effects and modulatory mechanisms of α-Cyperone on SCI. MATERIALS AND METHODS: An SCI model was established in rats which were further treated with α-Cyperone. Basso-Beattie-Bresnahan (BBB) scoring was used to assess motor rehabilitation of rats modeled with SCI. The spinal cord tissues were collected, and the effect of α-Cyperone on the histopathology of rats modeled with SCI was detected by hematoxylin-eosin staining. Rat primary cortical neuron was stimulated with H2O2 and further treated with α-Cyperone and nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. The levels of Nrf2, interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), Akt, toll-like receptor 4 (TLR4), and tumor necrosis factor-alpha (TNF-α) were detected by immunofluorescence staining and western blotting. RESULTS: α-Cyperone elevated the BBB score and ameliorated the damage of spinal cord tissue in rats modeled with SCI. The levels of IL-6, Nrf2, NF-κB, TLR4, and TNF-α were upregulated, whereas that of Akt was downregulated in rats and cells modeled with SCI. Furthermore, α-Cyperone diminished the levels of IL-6, NF-κB, TLR4, and TNF-α, while augmenting those of Nrf2 and Akt in rats and cells modeled with SCI. ML385 inhibited the Nrf2 level that had been promoted by α-Cyperone in the nucleus and elevated the Nrf2 level that had been suppressed by α-Cyperone in the cytosol of cells modeled with SCI. ML385 increased the levels of IL-6, NF-κB, TLR4, and TNF-α that had been inhibited by α-Cyperone and decreased the Akt level that had been enhanced by α-Cyperone in cells modeled with SCI. CONCLUSIONS: α-Cyperone suppressed SCI-induced inflammation and spinal cord tissue damage via activating Akt/Nrf2 and suppressing NF-κB pathways.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Animais , Peróxido de Hidrogênio/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Naftalenos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362277

RESUMO

Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.


Assuntos
Doenças Neurodegenerativas , Síndromes Neurotóxicas , Humanos , Cádmio/metabolismo , Doenças Neurodegenerativas/metabolismo , Autofagia , Estresse Oxidativo , Rim/metabolismo , Apoptose , Fígado/metabolismo , Síndromes Neurotóxicas/metabolismo
19.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430889

RESUMO

Cadmium (Cd) is a potential pathogenic factor in the urinary system that is associated with various kidney diseases. Microplastics (MPs), comprising of plastic particles less than 5 mm in diameter, are a major carrier of contaminants. We applied 10 mg/L particle 5 µm MPs and 50 mg/L CdCl2 in water for three months in vivo assay to assess the damaging effects of MPs and Cd exposure on the kidney. In vivo tests showed that MPs exacerbated Cd-induced kidney injury. In addition, the involvement of oxidative stress, autophagy, apoptosis, and fibrosis in the damaging effects of MPs and Cd on mouse kidneys were investigated. The results showed that MPs aggravated Cd-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. These findings provide new insights into the toxic effects of MPs on the mouse kidney.


Assuntos
Cádmio , Microplásticos , Animais , Camundongos , Cádmio/toxicidade , Plásticos , Autofagia , Apoptose , Estresse Oxidativo , Rim , Fibrose
20.
Am J Respir Cell Mol Biol ; 64(1): 19-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877613

RESUMO

Emerging evidence shows that after injury or infection, the mesenteric lymph acts as a conduit for gut-derived toxic factors to enter the blood circulation, causing systemic inflammation and acute lung injury. Neither the cellular and molecular identity of lymph factors nor their mechanisms of action have been well understood and thus have become a timely topic of investigation. This review will first provide a summary of background knowledge on gut barrier and mesenteric lymphatics, followed by a discussion focusing on the current understanding of potential injurious factors in the lymph and their mechanistic contributions to lung injury. We also examine lymph factors with antiinflammatory properties as well as the bidirectional nature of the gut-lung axis in inflammation.


Assuntos
Trato Gastrointestinal/patologia , Pulmão/patologia , Vasos Linfáticos/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Lesão Pulmonar Aguda/patologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA