Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 585(7826): 579-583, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939086

RESUMO

Malaria has had a major effect on the human genome, with many protective polymorphisms-such as the sickle-cell trait-having been selected to high frequencies in malaria-endemic regions1,2. The blood group variant Dantu provides 74% protection against all forms of severe malaria in homozygous individuals3-5, a similar degree of protection to that afforded by the sickle-cell trait and considerably greater than that offered by the best malaria vaccine. Until now, however, the protective mechanism has been unknown. Here we demonstrate the effect of Dantu on the ability of the merozoite form of the malaria parasite Plasmodium falciparum to invade red blood cells (RBCs). We find that Dantu is associated with extensive changes to the repertoire of proteins found on the RBC surface, but, unexpectedly, inhibition of invasion does not correlate with specific RBC-parasite receptor-ligand interactions. By following invasion using video microscopy, we find a strong link between RBC tension and merozoite invasion, and identify a tension threshold above which invasion rarely occurs, even in non-Dantu RBCs. Dantu RBCs have higher average tension than non-Dantu RBCs, meaning that a greater proportion resist invasion. These findings provide both an explanation for the protective effect of Dantu, and fresh insight into why the efficiency of P. falciparum invasion might vary across the heterogenous populations of RBCs found both within and between individuals.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Eritrócitos/citologia , Eritrócitos/parasitologia , Malária Falciparum/patologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Antígenos de Grupos Sanguíneos/classificação , Antígenos de Grupos Sanguíneos/metabolismo , Criança , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Genótipo , Humanos , Quênia , Ligantes , Masculino , Merozoítos/metabolismo , Merozoítos/patogenicidade , Microscopia de Vídeo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade
2.
PLoS Genet ; 19(9): e1010910, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708213

RESUMO

Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.


Assuntos
Malária Falciparum , Malária , Criança , Humanos , Sistema ABO de Grupos Sanguíneos/genética , Plasmodium falciparum/genética , Estudos de Casos e Controles , Quênia , Genótipo , Malária Falciparum/genética
3.
Haematologica ; 107(7): 1589-1598, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34498446

RESUMO

Malaria and invasive non-typhoidal Salmonella (NTS) are life-threatening infections that often co-exist in African children. The iron-regulatory hormone hepcidin is highly upregulated during malaria and controls the availability of iron, a critical nutrient for bacterial growth. We investigated the relationship between Plasmodium falciparum malaria and NTS bacteremia in all pediatric admissions aged <5 years between August 1998 and October 2019 (n=75,034). We then assayed hepcidin and measures of iron status in five groups: (1) children with concomitant severe malarial anemia (SMA) and NTS (SMA+NTS, n=16); and in matched children with (2) SMA (n=33); (3) NTS (n=33); (4) cerebral malaria (CM, n=34); and (5) community-based children. SMA and severe anemia without malaria were associated with a 2-fold or more increased risk of NTS bacteremia, while other malaria phenotypes were not associated with increased NTS risk. Children with SMA had lower hepcidin/ferritin ratios (0.10; interquartile range [IQR]: 0.03-0.19) than those with CM (0.24; IQR: 0.14-0.69; P=0.006) or asymptomatic malaria (0.19; IQR: 0.09-0.46; P=0.01) indicating suppressed hepcidin levels. Children with SMA+NTS had lower hepcidin levels (9.3 ng/mL; IQR: 4.7-49.8) and hepcidin/ferritin ratios (0.03; IQR: 0.01-0.22) than those with NTS alone (105.8 ng/mL; IQR: 17.3-233.3; P=0.02 and 0.31; IQR: 0.06-0.66; P=0.007, respectively). Since hepcidin degrades ferroportin on the Salmonella-containing vacuole, we hypothesize that reduced hepcidin in children with SMA might contribute to NTS growth by modulating iron availability for bacterial growth. Further studies are needed to understand how the hepcidin-ferroportin axis might mediate susceptibility to NTS in severely anemic children.


Assuntos
Anemia , Bacteriemia , Malária Falciparum , Malária , Anemia/complicações , Bacteriemia/complicações , Bacteriemia/microbiologia , Criança , Ferritinas , Hepcidinas , Humanos , Ferro , Quênia/epidemiologia , Malária/complicações , Malária Falciparum/complicações , Salmonella
4.
BMC Med ; 19(1): 115, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011341

RESUMO

BACKGROUND: Children living in sub-Saharan Africa have a high burden of rickets and infectious diseases, conditions that are linked to vitamin D deficiency. However, data on the vitamin D status of young African children and its environmental and genetic predictors are limited. We aimed to examine the prevalence and predictors of vitamin D deficiency in young African children. METHODS: We measured 25-hydroxyvitamin D (25(OH)D) and typed the single nucleotide polymorphisms, rs4588 and rs7041, in the GC gene encoding the vitamin D binding protein (DBP) in 4509 children aged 0-8 years living in Kenya, Uganda, Burkina Faso, The Gambia and South Africa. We evaluated associations between vitamin D status and country, age, sex, season, anthropometric indices, inflammation, malaria and DBP haplotypes in regression analyses. RESULTS: Median age was 23.9 months (interquartile range [IQR] 12.3, 35.9). Prevalence of vitamin D deficiency using 25(OH)D cut-offs of < 30 nmol/L and < 50 nmol/L was 0.6% (95% CI 0.4, 0.9) and 7.8% (95% CI 7.0, 8.5), respectively. Overall median 25(OH)D level was 77.6 nmol/L (IQR 63.6, 94.2). 25(OH)D levels were lower in South Africa, in older children, during winter or the long rains, and in those with afebrile malaria, and higher in children with inflammation. 25(OH)D levels did not vary by stunting, wasting or underweight in adjusted regression models. The distribution of Gc variants was Gc1f 83.3%, Gc1s 8.5% and Gc2 8.2% overall and varied by country. Individuals carrying the Gc2 variant had lower median 25(OH)D levels (72.4 nmol/L (IQR 59.4, 86.5) than those carrying the Gc1f (77.3 nmol/L (IQR 63.5, 92.8)) or Gc1s (78.9 nmol/L (IQR 63.8, 95.5)) variants. CONCLUSIONS: Approximately 0.6% and 7.8% of young African children were vitamin D deficient as defined by 25(OH)D levels < 30 nmol/L and < 50 nmol/L, respectively. Latitude, age, season, and prevalence of inflammation and malaria should be considered in strategies to assess and manage vitamin D deficiency in young children living in Africa.


Assuntos
Deficiência de Vitamina D , Adulto , Criança , Pré-Escolar , Haplótipos , Humanos , Prevalência , Estações do Ano , África do Sul , Vitamina D , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/epidemiologia , Proteína de Ligação a Vitamina D/genética , Adulto Jovem
5.
BMC Med ; 18(1): 31, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102669

RESUMO

BACKGROUND: Iron deficiency (ID) is a major public health burden in African children and accurate prevalence estimates are important for effective nutritional interventions. However, ID may be incorrectly estimated in Africa because most measures of iron status are altered by inflammation and infections such as malaria. Through the current study, we have assessed different approaches to the prediction of iron status and estimated the burden of ID in African children. METHODS: We assayed iron and inflammatory biomarkers in 4853 children aged 0-8 years from Kenya, Uganda, Burkina Faso, South Africa, and The Gambia. We described iron status and its relationship with age, sex, inflammation, and malaria parasitemia. We defined ID using the WHO guideline (ferritin < 12 µg/L or < 30 µg/L in the presence of inflammation in children < 5 years old or < 15 µg/L in children ≥ 5 years old). We compared this with a recently proposed gold standard, which uses regression-correction for ferritin levels based on the relationship between ferritin levels, inflammatory markers, and malaria. We further investigated the utility of other iron biomarkers in predicting ID using the inflammation and malaria regression-corrected estimate as a gold standard. RESULTS: The prevalence of ID was highest at 1 year of age and in male infants. Inflammation and malaria parasitemia were associated with all iron biomarkers, although transferrin saturation was least affected. Overall prevalence of WHO-defined ID was 34% compared to 52% using the inflammation and malaria regression-corrected estimate. This unidentified burden of ID increased with age and was highest in countries with high prevalence of inflammation and malaria, where up to a quarter of iron-deficient children were misclassified as iron replete. Transferrin saturation < 11% most closely predicted the prevalence of ID according to the regression-correction gold standard. CONCLUSIONS: The prevalence of ID is underestimated in African children when defined using the WHO guidelines, especially in malaria-endemic populations, and the use of transferrin saturation may provide a more accurate approach. Further research is needed to identify the most accurate measures for determining the prevalence of ID in sub-Saharan Africa.


Assuntos
Anemia Ferropriva/epidemiologia , África , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
6.
Clin Infect Dis ; 68(11): 1807-1814, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30219845

RESUMO

BACKGROUND: It remains unclear whether improving iron status increases malaria risk, and few studies have looked at the effect of host iron status on subsequent malaria infection. We therefore aimed to determine whether a child's iron status influences their subsequent risk of malaria infection in sub-Saharan Africa. METHODS: We assayed iron and inflammatory biomarkers from community-based cohorts of 1309 Kenyan and 1374 Ugandan children aged 0-7 years and conducted prospective surveillance for episodes of malaria. Poisson regression models were fitted to determine the effect of iron status on the incidence rate ratio (IRR) of malaria using longitudinal data covering a period of 6 months. Models were adjusted for age, sex, parasitemia, inflammation, and study site. RESULTS: At baseline, the prevalence of iron deficiency (ID) was 36.9% and 34.6% in Kenyan and Ugandan children, respectively. ID anemia (IDA) affected 23.6% of Kenyan and 17.6% of Ugandan children. Malaria risk was lower in children with ID (IRR, 0.7; 95% confidence interval [CI], 0.6, 0.8; P < .001) and IDA (IRR, 0.7; 95% CI, 0.6, 0.9; P = .006). Low transferrin saturation (<10%) was similarly associated with lower malaria risk (IRR, 0.8; 95% CI, 0.6, 0.9; P = .016). However, variation in hepcidin, soluble transferrin receptors (sTfR), and hemoglobin/anemia was not associated with altered malaria risk. CONCLUSIONS: ID appears to protect against malaria infection in African children when defined using ferritin and transferrin saturation, but not when defined by hepcidin, sTfR, or hemoglobin. Additional research is required to determine causality. CLINICAL TRIALS REGISTRATION: ISRCTN32849447.


Assuntos
Ferro/sangue , Malária/epidemiologia , Oligoelementos/sangue , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Estudos Longitudinais , Masculino , Estado Nutricional , Prevalência , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Fatores de Risco , Uganda/epidemiologia
7.
Am J Hum Genet ; 98(6): 1092-1100, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27236921

RESUMO

Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.


Assuntos
Bacteriemia/genética , Pneumonia Pneumocócica/genética , Polimorfismo Genético/genética , RNA Longo não Codificante/genética , Streptococcus pneumoniae/genética , Adolescente , Bacteriemia/microbiologia , Bacteriemia/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Fatores de Risco
8.
Am J Epidemiol ; 187(2): 199-205, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992220

RESUMO

The potential association between sickle cell trait (SCT) and increased arterial stiffness/blood pressure (BP) has not been evaluated in detail despite its association with stroke, sudden death, and renal disease. We performed 24-hour ambulatory BP monitoring and arterial stiffness measurements in adolescents raised in a malaria-free environment in Kenya. Between December 2015 and June 2016, 938 randomly selected adolescents (ages 11-17 years) who had been continuous residents of Nairobi from birth were invited to participate in the study. Standard clinic BP measurement was performed, followed by 24-hour ambulatory BP monitoring and arterial stiffness measurement using an Arteriograph24 (TensioMed Ltd., Budapest, Hungary) device. SCT status was determined using DNA genotyping in contemporaneously collected blood samples. Of the 938 adolescents invited to participate, 609 (65%) provided complete data for analysis. SCT was present in 103 (15%). Mean 24-hour systolic and diastolic BPs were 116 (standard deviation (SD), 11.5) mm Hg and 64 (SD, 7) mm Hg, respectively, in children with SCT and 117 (SD, 11.4) mm Hg and 64 (SD, 6.8) mm Hg, respectively, in non-SCT children. Mean pulse wave velocity (PWV) was 7.1 (SD, 0.8) m/second and 7.0 (SD, 0.8) m/second in SCT and non-SCT children, respectively. We observed no differences in PWV or in any clinic or ambulatory BP-derived measures between adolescents with and without SCT. These data suggest that SCT does not independently influence BP or PWV.


Assuntos
Pressão Sanguínea/genética , Traço Falciforme/genética , Traço Falciforme/fisiopatologia , Rigidez Vascular/genética , Adolescente , Monitorização Ambulatorial da Pressão Arterial , Criança , Feminino , Técnicas de Genotipagem , Humanos , Quênia , Masculino , Análise de Onda de Pulso/estatística & dados numéricos
9.
Am J Hematol ; 93(3): 363-370, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168218

RESUMO

Sickle cell anemia (SCA) is the commonest severe monogenic disorders of humans. The disease has been highly characterized in high-income countries but not in sub-Saharan Africa where SCA is most prevalent. We conducted a retrospective cohort study of all children 0-13 years admitted from within a defined study area to Kilifi County Hospital in Kenya over a five-year period. Children were genotyped for SCA retrospectively and incidence rates calculated with reference to population data. Overall, 576 of 18,873 (3.1%) admissions had SCA of whom the majority (399; 69.3%) were previously undiagnosed. The incidence of all-cause hospital admission was 57.2/100 person years of observation (PYO; 95%CI 52.6-62.1) in children with SCA and 3.7/100 PYO (95%CI 3.7-3.8) in those without SCA (IRR 15.3; 95%CI 14.1-16.6). Rates were higher for the majority of syndromic diagnoses at all ages beyond the neonatal period, being especially high for severe anemia (hemoglobin <50 g/L; IRR 58.8; 95%CI 50.3-68.7), stroke (IRR 486; 95%CI 68.4-3,450), bacteremia (IRR 23.4; 95%CI 17.4-31.4), and for bone (IRR 607; 95%CI 284-1,300), and joint (IRR 80.9; 95%CI 18.1-362) infections. The use of an algorithm based on just five clinical features would have identified approximately half of all SCA cases among hospital-admitted children with a number needed to test to identify each affected patient of only fourteen. Our study illustrates the clinical epidemiology of SCA in a malaria-endemic environment without specific interventions. The targeted testing of hospital-admitted children using the Kilifi Algorithm provides a pragmatic approach to early diagnosis in high-prevalence countries where newborn screening is unavailable.


Assuntos
Anemia Falciforme/epidemiologia , Adolescente , Anemia Falciforme/diagnóstico , Bacteriemia/epidemiologia , Criança , Pré-Escolar , Comorbidade , Diagnóstico Tardio/prevenção & controle , Diagnóstico Tardio/estatística & dados numéricos , Países em Desenvolvimento , Testes Diagnósticos de Rotina , Suscetibilidade a Doenças , Diagnóstico Precoce , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária/epidemiologia , Masculino , Desnutrição/epidemiologia , Meningite/epidemiologia , Admissão do Paciente , Vigilância da População , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia
10.
Clin Infect Dis ; 64(7): 939-946, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362936

RESUMO

BACKGROUND: In the Fluid Expansion as a Supportive Treatment (FEAST) trial, an unexpectedly high proportion of participants from eastern Uganda presented with blackwater fever (BWF). METHODS: We describe the prevalence and outcome of BWF among trial participants and compare the prevalence of 3 malaria-protective red blood cell polymorphisms in BWF cases vs both trial (non-BWF) and population controls. RESULTS: Of 3170 trial participants, 394 (12.4%) had BWF. The majority (318 [81.0%]) presented in eastern Uganda and were the subjects of further analysis. BWF cases typically presented with both clinical jaundice (254/318 [80%]) and severe anemia (hemoglobin level <5 g/dL) (238/310 [77%]). Plasmodium falciparum parasitemia was less frequent than in non-BWF controls, but a higher proportion were positive for P. falciparum histidine rich protein 2 (192/246 [78.0%]) vs 811/1154 [70.3%]; P = .014), suggesting recent antimalarial treatment. Overall, 282 of 318 (88.7%) received transfusions, with 94 of 282 (33.3%) and 9 of 282 (3.4%) receiving 2 or 3 transfusions, respectively. By day 28, 39 of 318 (12.3%) BWF cases and 154 of 1554 (9.9%) non-BWF controls had died (P = .21), and 7 of 255 (3.0%) vs 13/1212 (1%), respectively, had severe anemia (P = .036). We found no association with G6PD deficiency. The prevalence of both the sickle cell trait (10/218 [4.6%]) and homozygous α+thalassemia (8/216 [3.7%]) were significantly lower among cases than among population controls (334/2123 [15.7%] and 141/2114 [6.6%], respectively), providing further support for the role of malaria. CONCLUSIONS: We report the emergence of BWF in eastern Uganda, a condition that, according to local investigators, was rare until the last 7 years. We speculate that this might relate to the introduction of artemisinin-based combination therapies. Further studies investigating this possibility are urgently required.


Assuntos
Febre Hemoglobinúrica/diagnóstico , Febre Hemoglobinúrica/epidemiologia , Fatores Etários , Biomarcadores , Febre Hemoglobinúrica/complicações , Febre Hemoglobinúrica/parasitologia , Pré-Escolar , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Glucosefosfato Desidrogenase/genética , Hemoglobinopatias/complicações , Hemoglobinopatias/genética , Humanos , Lactente , Masculino , Mutação , Avaliação de Resultados da Assistência ao Paciente , Fenótipo , Polimorfismo Genético , Prevalência , Índice de Gravidade de Doença , Avaliação de Sintomas , Uganda/epidemiologia , Urinálise
11.
Mol Biol Evol ; 33(5): 1188-204, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26744416

RESUMO

Genome-wide searches for loci involved in human resistance to malaria are currently being conducted on a large scale in Africa using case-control studies. Here, we explore the utility of an alternative approach-"environmental correlation analysis, ECA," which tests for clines in allele frequencies across a gradient of an environmental selection pressure-to identify genes that have historically protected against death from malaria. We collected genotype data from 12,425 newborns on 57 candidate malaria resistance loci and 9,756 single nucleotide polymorphisms (SNPs) selected at random from across the genome, and examined their allele frequencies for geographic correlations with long-term malaria prevalence data based on 84,042 individuals living under different historical selection pressures from malaria in coastal Kenya. None of the 57 candidate SNPs showed significant (P < 0.05) correlations in allele frequency with local malaria transmission intensity after adjusting for population structure and multiple testing. In contrast, two of the random SNPs that had highly significant correlations (P < 0.01) were in genes previously linked to malaria resistance, namely, CDH13, encoding cadherin 13, and HS3ST3B1, encoding heparan sulfate 3-O-sulfotransferase 3B1. Both proteins play a role in glycoprotein-mediated cell-cell adhesion which has been widely implicated in cerebral malaria, the most life-threatening form of this disease. Other top genes, including CTNND2 which encodes δ-catenin, a molecular partner to cadherin, were significantly enriched in cadherin-mediated pathways affecting inflammation of the brain vascular endothelium. These results demonstrate the utility of ECA in the discovery of novel genes and pathways affecting infectious disease.


Assuntos
Malária/genética , Adolescente , Alelos , Estudos de Casos e Controles , Criança , Pré-Escolar , Resistência à Doença/genética , Meio Ambiente , Frequência do Gene , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Plasmodium falciparum/microbiologia , Polimorfismo de Nucleotídeo Único , Seleção Genética
12.
Blood ; 123(13): 2008-16, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24478401

RESUMO

Haptoglobin (Hp) scavenges free hemoglobin following malaria-induced hemolysis. Few studies have investigated the relationship between the common Hp variants and the risk of severe malaria, and their results are inconclusive. We conducted a case-control study of 996 children with severe Plasmodium falciparum malaria and 1220 community controls and genotyped for Hp, hemoglobin (Hb) S heterozygotes, and α(+)thalassemia. Hb S heterozygotes and α(+)thalassemia homozygotes were protected from severe malaria (odds ratio [OR], 0.12; 95% confidence interval [CI], 0.07-0.18 and OR, 0.69; 95% CI, 0.53-0.91, respectively). The risk of severe malaria also varied by Hp genotype: Hp2-1 was associated with the greatest protection against severe malaria and Hp2-2 with the greatest risk. Meta-analysis of the current and published studies suggests that Hp2-2 is associated with increased risk of severe malaria compared with Hp2-1. We found a significant interaction between Hp genotype and α(+)thalassemia in predicting risk of severe malaria: Hp2-1 in combination with heterozygous or homozygous α(+)thalassemia was associated with protection from severe malaria (OR, 0.73; 95% CI, 0.54-0.99 and OR, 0.48; 95% CI, 0.32-0.73, respectively), but α(+)thalassemia in combination with Hp2-2 was not protective. This epistatic interaction together with varying frequencies of α(+)thalassemia across Africa may explain the inconsistent relationship between Hp genotype and malaria reported in previous studies.


Assuntos
Epistasia Genética , Haptoglobinas/genética , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Talassemia alfa/epidemiologia , Talassemia alfa/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Metanálise como Assunto , Fatores de Risco , Índice de Gravidade de Doença
13.
BMC Med ; 13: 183, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26248615

RESUMO

BACKGROUND: The distribution of Plasmodium falciparum clinical malaria episodes is over-dispersed among children in endemic areas, with more children experiencing multiple clinical episodes than would be expected based on a Poisson distribution. There is consistent evidence for micro-epidemiological variation in exposure to P. falciparum. The aim of the current study was to identify children with excess malaria episodes after controlling for malaria exposure. METHODS: We selected the model that best fit the data out of the models examined and included the following covariates: age, a weighted local prevalence of infection as an index of exposure, and calendar time to predict episodes of malaria on active surveillance malaria data from 2,463 children of under 15 years of age followed for between 5 and 15 years each. Using parameters from the zero-inflated negative binomial model which best fitted our data, we ran 100 simulations of the model based on our population to determine the variation that might be seen due to chance. RESULTS: We identified 212 out of 2,463 children who had a number of clinical episodes above the 95(th) percentile of the simulations run from the model, hereafter referred to as "excess malaria (EM)". We then identified exposure-matched controls with "average numbers of malaria" episodes, and found that the EM group had higher parasite densities when asymptomatically infected or during clinical malaria, and were less likely to be of haemoglobin AS genotype. CONCLUSIONS: Of the models tested, the negative zero-inflated negative binomial distribution with exposure, calendar year, and age acting as independent predictors, fitted the distribution of clinical malaria the best. Despite accounting for these factors, a group of children suffer excess malaria episodes beyond those predicted by the model. An epidemiological framework for identifying these children will allow us to study factors that may explain excess malaria episodes.


Assuntos
Proteção da Criança/estatística & dados numéricos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Modelos Estatísticos , Plasmodium falciparum/isolamento & purificação , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia/epidemiologia , Estudos Longitudinais , Malária Falciparum/transmissão , Masculino , Distribuição de Poisson , Prevalência , Fatores de Risco
14.
BMC Med ; 12: 65, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755265

RESUMO

BACKGROUND: Sickle cell disease (SCD) is common in many parts of sub-Saharan Africa (SSA), where it is associated with high early mortality. In the absence of newborn screening, most deaths among children with SCD go unrecognized and unrecorded. As a result, SCD does not receive the attention it deserves as a leading cause of death among children in SSA. In the current study, we explored the potential utility of verbal autopsy (VA) as a tool for attributing underlying cause of death (COD) in children to SCD. METHODS: We used the 2007 WHO Sample Vital Registration with Verbal Autopsy (SAVVY) VA tool to determine COD among child residents of the Kilifi Health and Demographic Surveillance System (KHDSS), Kenya, who died between January 2008 and April 2011. VAs were coded both by physician review (physician coded verbal autopsy, PCVA) using COD categories based on the WHO International Classification of Diseases 10th Edition (ICD-10) and by using the InterVA-4 probabilistic model after extracting data according to the 2012 WHO VA standard. Both of these methods were validated against one of two gold standards: hospital ICD-10 physician-assigned COD for children who died in Kilifi District Hospital (KDH) and, where available, laboratory confirmed SCD status for those who died in the community. RESULTS: Overall, 6% and 5% of deaths were attributed to SCD on the basis of PCVA and the InterVA-4 model, respectively. Of the total deaths, 22% occurred in hospital, where the agreement coefficient (AC1) for SCD between PCVA and hospital physician diagnosis was 95.5%, and agreement between InterVA-4 and hospital physician diagnosis was 96.9%. Confirmatory laboratory evidence of SCD status was available for 15% of deaths, in which the AC1 against PCVA was 87.5%. CONCLUSIONS: Other recent studies and provisional data from this study, outlining the importance of SCD as a cause of death in children in many parts of the developing world, contributed to the inclusion of specific SCD questions in the 2012 version of the WHO VA instruments, and a specific code for SCD has now been included in the WHO and InterVA-4 COD listings. With these modifications, VA may provide a useful approach to quantifying the contribution of SCD to childhood mortality in rural African communities. Further studies will be needed to evaluate the generalizability of our findings beyond our local context.


Assuntos
Anemia Falciforme/mortalidade , Autopsia , Prontuários Médicos/estatística & dados numéricos , África Subsaariana/epidemiologia , Causas de Morte , Criança , Feminino , Humanos , Recém-Nascido , Classificação Internacional de Doenças , Quênia/epidemiologia , Masculino , Modelos Estatísticos , População Rural
15.
BMC Med ; 12: 67, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24767094

RESUMO

BACKGROUND: Severe anemia (SA, hemoglobin <6 g/dl) is a leading cause of pediatric hospital admission in Africa, with significant in-hospital mortality. The underlying etiology is often infectious, but specific pathogens are rarely identified. Guidelines developed to encourage rational blood use recommend a standard volume of whole blood (20 ml/kg) for transfusion, but this is commonly associated with a frequent need for repeat transfusion and poor outcome. Evidence is lacking on what hemoglobin threshold criteria for intervention and volume are associated with the optimal survival outcomes. METHODS: We evaluated the safety and efficacy of a higher volume of whole blood (30 ml/kg; Tx30: n = 78) against the standard volume (20 ml/kg; Tx20: n = 82) in Ugandan children (median age 36 months (interquartile range (IQR) 13 to 53)) for 24-hour anemia correction (hemoglobin >6 g/dl: primary outcome) and 28-day survival. RESULTS: Median admission hemoglobin was 4.2 g/dl (IQR 3.1 to 4.9). Initial volume received followed the randomization strategy in 155 (97%) patients. By 24-hours, 70 (90%) children in the Tx30 arm had corrected SA compared to 61 (74%) in the Tx20 arm; cause-specific hazard ratio = 1.54 (95% confidence interval 1.09 to 2.18, P = 0.01). From admission to day 28 there was a greater hemoglobin increase from enrollment in Tx30 (global P <0.0001). Serious adverse events included one non-fatal allergic reaction and one death in the Tx30 arm. There were six deaths in the Tx20 arm (P = 0.12); three deaths were adjudicated as possibly related to transfusion, but none secondary to volume overload. CONCLUSION: A higher initial transfusion volume prescribed at hospital admission was safe and resulted in an accelerated hematological recovery in Ugandan children with SA. Future testing in a large, pragmatic clinical trial to establish the effect on short and longer-term survival is warranted. TRIAL REGISTRATION: ClinicalTrials.Gov identifier: NCT01461590 registered 26 October 2011.


Assuntos
Anemia/terapia , Transfusão de Sangue , Hemoglobina A , Doença Aguda , África , Anemia/sangue , Transfusão de Sangue/estatística & dados numéricos , Pré-Escolar , Feminino , Hospitalização , Humanos , Lactente , Masculino , Reação Transfusional
16.
BMC Med Genet ; 15: 93, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25201310

RESUMO

BACKGROUND: The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. METHODS: We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. RESULTS: We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5×10⁻²°°, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). CONCLUSIONS: Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Alelos , Mapeamento Cromossômico , Estudos de Coortes , Eritrócitos/enzimologia , Feminino , Loci Gênicos , Variação Genética , Genótipo , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/patologia , Haplótipos , Heterozigoto , Humanos , Lactente , Quênia , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Nat Genet ; 37(11): 1253-7, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227994

RESUMO

The hemoglobinopathies, disorders of hemoglobin structure and production, protect against death from malaria. In sub-Saharan Africa, two such conditions occur at particularly high frequencies: presence of the structural variant hemoglobin S and alpha(+)-thalassemia, a condition characterized by reduced production of the normal alpha-globin component of hemoglobin. Individually, each is protective against severe Plasmodium falciparum malaria, but little is known about their malaria-protective effects when inherited in combination. We investigated this question by studying a population on the coast of Kenya and found that the protection afforded by each condition inherited alone was lost when the two conditions were inherited together, to such a degree that the incidence of both uncomplicated and severe P. falciparum malaria was close to baseline in children heterozygous with respect to the mutation underlying the hemoglobin S variant and homozygous with respect to the mutation underlying alpha(+)-thalassemia. Negative epistasis could explain the failure of alpha(+)-thalassemia to reach fixation in any population in sub-Saharan Africa.


Assuntos
Hemoglobina Falciforme/genética , Malária Falciparum/genética , Malária Falciparum/prevenção & controle , Plasmodium falciparum/crescimento & desenvolvimento , Traço Falciforme/genética , Talassemia alfa/genética , África Subsaariana/epidemiologia , Animais , Criança , Estudos de Coortes , Heterozigoto , Humanos , Incidência , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Traço Falciforme/epidemiologia , Talassemia alfa/epidemiologia
19.
Matern Child Nutr ; 10(1): 135-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22973867

RESUMO

Although inherited blood disorders are common among children in many parts of Africa, limited data are available about their prevalence or contribution to childhood anaemia. We conducted a cross-sectional survey of 858 children aged 6-35 months who were randomly selected from 60 villages in western Kenya. Haemoglobin (Hb), ferritin, malaria, C-reactive protein (CRP) and retinol binding protein (RBP) were measured from capillary blood. Using polymerase chain reaction (PCR), Hb type, -3.7 kb alpha-globin chain deletion, glucose-6-phosphate dehydrogenase (G6PD) genotype and haptoglobin (Hp) genotype were determined. More than 2 out of 3 children had at least one measured blood disorder. Sickle cell trait (HbAS) and disease (HbSS) were found in 17.1% and 1.6% of children, respectively; 38.5% were heterozygotes and 9.6% were homozygotes for α(+) -thalassaemia. The Hp 2-2 genotype was found in 20.4% of children, whereas 8.2% of males and 6.8% of children overall had G6PD deficiency. There were no significant differences in the distribution of malaria by the measured blood disorders, except among males with G6PD deficiency who had a lower prevalence of clinical malaria than males of normal G6PD genotype (P = 0.005). After excluding children with malaria parasitaemia, inflammation (CRP > 5 mg L(-1) ), iron deficiency (ferritin < 12 µg L(-1) ) or vitamin A deficiency (RBP < 0.7 µg L(-1) ), the prevalence of anaemia among those without α(+) -thalassaemia (43.0%) remained significantly lower than that among children who were either heterozygotes (53.5%) or homozygotes (67.7%, P = 0.03). Inherited blood disorders are common among pre-school children in western Kenya and are important contributors to anaemia.


Assuntos
Anemia Falciforme/epidemiologia , Efeitos Psicossociais da Doença , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Malária/epidemiologia , Talassemia/epidemiologia , Anemia Falciforme/genética , Proteína C-Reativa/metabolismo , Pré-Escolar , Estudos Transversais , Feminino , Ferritinas/sangue , Deleção de Genes , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Haptoglobinas , Hemoglobinas/metabolismo , Heterozigoto , Homozigoto , Humanos , Lactente , Quênia/epidemiologia , Malária/genética , Masculino , Prevalência , Proteínas de Ligação ao Retinol/metabolismo , Traço Falciforme/epidemiologia , Traço Falciforme/genética , Talassemia/genética
20.
Nutrients ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405984

RESUMO

Vitamin D regulates the master iron hormone hepcidin, and iron in turn alters vitamin D metabolism. Although vitamin D and iron deficiency are highly prevalent globally, little is known about their interactions in Africa. To evaluate associations between vitamin D and iron status we measured markers of iron status, inflammation, malaria parasitemia, and 25-hydroxyvitamin D (25(OH)D) concentrations in 4509 children aged 0.3 months to 8 years living in Kenya, Uganda, Burkina Faso, The Gambia, and South Africa. Prevalence of iron deficiency was 35.1%, and prevalence of vitamin D deficiency was 0.6% and 7.8% as defined by 25(OH)D concentrations of <30 nmol/L and <50 nmol/L, respectively. Children with 25(OH)D concentrations of <50 nmol/L had a 98% increased risk of iron deficiency (OR 1.98 [95% CI 1.52, 2.58]) compared to those with 25(OH)D concentrations >75 nmol/L. 25(OH)D concentrations variably influenced individual markers of iron status. Inflammation interacted with 25(OH)D concentrations to predict ferritin levels. The link between vitamin D and iron status should be considered in strategies to manage these nutrient deficiencies in African children.


Assuntos
Deficiências de Ferro , Deficiência de Vitamina D , Biomarcadores , Criança , Humanos , Inflamação/epidemiologia , Ferro , Prevalência , África do Sul , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA