Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2312607121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236735

RESUMO

Homosporous lycophytes (Lycopodiaceae) are a deeply diverged lineage in the plant tree of life, having split from heterosporous lycophytes (Selaginella and Isoetes) ~400 Mya. Compared to the heterosporous lineage, Lycopodiaceae has markedly larger genome sizes and remains the last major plant clade for which no chromosome-level assembly has been available. Here, we present chromosomal genome assemblies for two homosporous lycophyte species, the allotetraploid Huperzia asiatica and the diploid Diphasiastrum complanatum. Remarkably, despite that the two species diverged ~350 Mya, around 30% of the genes are still in syntenic blocks. Furthermore, both genomes had undergone independent whole genome duplications, and the resulting intragenomic syntenies have likewise been preserved relatively well. Such slow genome evolution over deep time is in stark contrast to heterosporous lycophytes and is correlated with a decelerated rate of nucleotide substitution. Together, the genomes of H. asiatica and D. complanatum not only fill a crucial gap in the plant genomic landscape but also highlight a potentially meaningful genomic contrast between homosporous and heterosporous species.


Assuntos
Genoma de Planta , Genômica , Genoma de Planta/genética , Tamanho do Genoma , Filogenia , Evolução Molecular
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042803

RESUMO

Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.


Assuntos
Sequência de Bases/genética , Genômica/tendências , Viridiplantae/genética , Biodiversidade , Evolução Biológica , Elementos de DNA Transponíveis/genética , Ecologia , Ecossistema , Embriófitas/genética , Evolução Molecular , Genoma , Genoma de Planta/genética , Genômica/métodos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Filogenia , Plantas/genética
3.
Annu Rev Entomol ; 69: 375-391, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37758220

RESUMO

Yucca moths (Tegeticula and Parategeticula) are specialized pollinators of yucca plants, possessing unique, tentacle-like mouthparts used to actively collect pollen and deposit it onto the flowers of their hosts. The moths' larvae feed on the developing seeds and fruit tissue. First described in 1873, the yucca-yucca moth pollination system is now considered the archetypical example of a coevolved intimate mutualism. Research conducted over the past three decades has transformed our understanding of yucca moth diversity and host plant interactions. We summarize the current understanding of the diversity, ecology, and evolution of this group, review evidence for coevolution of the insects and their hosts, and describe how the nature of the interaction varies across evolutionary time and ecological contexts. Finally, we identify unresolved questions and areas for future research.


Assuntos
Mariposas , Yucca , Animais , Larva , Polinização , Plantas
4.
New Phytol ; 238(3): 1263-1277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721257

RESUMO

The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.


Assuntos
Herbicidas , Ipomoea , Resistência a Herbicidas/genética , Desequilíbrio de Ligação/genética , Evolução Biológica , Herbicidas/farmacologia , Ipomoea/genética
5.
Bioorg Med Chem Lett ; 92: 129385, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339719

RESUMO

The c-MYC oncogene transcription factor has been implicated in cell cycle regulation controlling cell growth and proliferation. It is tightly regulated in normal cells, but has been shown to be deregulated in cancer cells, and is thus an attractive target for oncogenic therapies. Building upon previous SAR, a series of analogues containing benzimidazole core replacements were prepared and evaluated, leading to the identification of imidazopyridazine compounds that were shown to possess equivalent or improved c-MYC HTRF pEC50 values, lipophilicity, solubility, and rat pharmacokinetics. The imidazopyridazine core was therefore determined to be superior to the original benzimidazole core and a viable alternate for continued lead optimization and medicinal chemistry campaigns.


Assuntos
Aminopiridinas , Proteínas Proto-Oncogênicas c-myc , Ratos , Animais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Benzimidazóis
6.
Epidemiol Infect ; 151: e78, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36938830

RESUMO

This study examined relationships between foodborne outbreak investigation characteristics, such as the epidemiological methods used, and the success of the investigation, as determined by whether the investigation identified an outbreak agent (i.e. pathogen), food item and contributing factor. This study used data from the Centers for Disease Control and Prevention's (CDC) National Outbreak Reporting System and National Environmental Assessment Reporting System to identify outbreak investigation characteristics associated with outbreak investigation success. We identified investigation characteristics that increase the probability of successful outbreak investigations: a rigorous epidemiology investigation method; a thorough environmental assessment, as measured by number of visits to complete the assessment; and the collection of clinical samples. This research highlights the importance of a comprehensive outbreak investigation, which includes epidemiology, environmental health and laboratory personnel working together to solve the outbreak.


Assuntos
Doenças Transmitidas por Alimentos , Estados Unidos/epidemiologia , Humanos , Doenças Transmitidas por Alimentos/epidemiologia , Surtos de Doenças , Alimentos , Contaminação de Alimentos , Vigilância da População
7.
Mol Biol Rep ; 50(10): 8639-8651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535245

RESUMO

Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.


Assuntos
Vesículas Extracelulares , Humanos , Biomarcadores , Medicina de Precisão , Comunicação Celular , Técnicas de Cultura de Células
8.
New Phytol ; 233(4): 1636-1642, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34342006

RESUMO

The genetic basis and evolution of sex determination in dioecious plants is emerging as an active area of research with exciting advances in genome sequencing and analysis technologies. As the sole species within the sister lineage to all other extant flowering plants, Amborella trichopoda is an important model for understanding the evolution and development of flowers. Plants typically produce only male or female flowers, but sex determination mechanisms are unknown for the species. Sequence data derived from plants of natural origin and an F1 mapping population were used to identify sex-linked genes and the nonrecombining region. Amborella trichopoda has a ZW sex determination system. Analysis of genes in a 4 Mb nonrecombining sex-determination region reveals recent divergence of Z and W gametologs, and few Z- and W-specific genes. The sex chromosomes of A. trichopoda evolved less than 16.5 Myr ago, long after the divergence of the extant angiosperms.


Assuntos
Magnoliopsida , Flores/genética , Magnoliopsida/genética , Filogenia , Cromossomos Sexuais/genética
9.
Mol Cell Biochem ; 477(2): 445-453, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783965

RESUMO

Kumquats are small citrus fruits produced by the Fortunella japonica tree. In addition to its aroma, kumquat essential oil may have antiproliferative effects; however, research on the effects of kumquat essential oil on human cell lines is limited. This study investigated the effects of kumquat essential oil on the proliferation of three human cell lines (HT-1080 fibrosarcoma cells, HeLa cervical adenocarcinoma cells, and CUA-4 normal human fibroblasts). As the concentration of kumquat essential oil increased, cell proliferation and viability, as measured by MTT activity assays, decreased in all three cell lines. Compared to untreated cells, HT-1080 fibrosarcoma cells exposed to kumquat essential oil exhibited an increased presence of phosphorylated JNK. Apoptosis was also stimulated, as PARP cleavage of treated HT-1080 fibrosarcoma cells was detected. Use of a JNK inhibitor resulted in decreased PARP cleavage in HT-1080 cells following treatment with kumquat EO, suggesting that activity of JNK is implicated in the stress response. The kumquat essential oil constituents limonene and myrcene both independently led to decreased proliferation and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Fibrossarcoma/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Proteínas de Neoplasias/metabolismo , Óleos Voláteis/farmacologia , Rutaceae/química , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Fibrossarcoma/enzimologia , Humanos , Óleos Voláteis/química
10.
Proc Natl Acad Sci U S A ; 116(11): 5015-5020, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804180

RESUMO

Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) metabolism, evolved in streptophyte algae-the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Cloroplastos/metabolismo , Transdução de Sinais , Viridiplantae/fisiologia , Difosfato de Adenosina , Embriófitas/fisiologia , Peróxido de Hidrogênio/metabolismo , Transporte de Íons , Movimento , Óxido Nítrico/metabolismo , Filogenia , Estômatos de Plantas/fisiologia
11.
Genome Res ; 28(9): 1333-1344, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002159

RESUMO

In grasses, two pathways that generate diverse and numerous 21-nt (premeiotic) and 24-nt (meiotic) phased siRNAs are highly enriched in anthers, the male reproductive organs. These "phasiRNAs" are analogous to mammalian piRNAs, yet their functions and evolutionary origins remain largely unknown. The 24-nt meiotic phasiRNAs have only been described in grasses, wherein their biogenesis is dependent on a specialized Dicer (DCL5). To assess how evolution gave rise to this pathway, we examined reproductive phasiRNA pathways in nongrass monocots: garden asparagus, daylily, and lily. The common ancestors of these species diverged approximately 115-117 million years ago (MYA). We found that premeiotic 21-nt and meiotic 24-nt phasiRNAs were abundant in all three species and displayed spatial localization and temporal dynamics similar to grasses. The miR2275-triggered pathway was also present, yielding 24-nt reproductive phasiRNAs, and thus originated more than 117 MYA. In asparagus, unlike in grasses, these siRNAs are largely derived from inverted repeats (IRs); analyses in lily identified thousands of precursor loci, and many were also predicted to form foldback substrates for Dicer processing. Additionally, reproductive phasiRNAs were present in female reproductive organs and thus may function in both male and female germinal development. These data describe several distinct mechanisms of production for 24-nt meiotic phasiRNAs and provide new insights into the evolution of reproductive phasiRNA pathways in monocots.


Assuntos
Evolução Molecular , Lilianae/genética , Poaceae/genética , RNA Interferente Pequeno/genética , Meiose , Proteínas de Plantas/metabolismo , Ribonuclease III/metabolismo
12.
New Phytol ; 230(3): 1201-1213, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33280113

RESUMO

Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.


Assuntos
Substâncias Explosivas , Gleiquênias , Magnoliopsida , Evolução Biológica , Gleiquênias/genética , Florestas , Fósseis , Magnoliopsida/genética , Filogenia
13.
Am J Bot ; 108(7): 1112-1121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34263456

RESUMO

PREMISE: Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales. METHODS: Using the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae. RESULTS: We curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL-III, a method statistically consistent with the multispecies coalescent model. CONCLUSIONS: The species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae-Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification of Cornus. Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set.


Assuntos
Cornaceae , Magnoliopsida , Magnoliopsida/genética , Filogenia
14.
Syst Biol ; 68(4): 594-606, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535394

RESUMO

Sequencing of target-enriched libraries is an efficient and cost-effective method for obtaining DNA sequence data from hundreds of nuclear loci for phylogeny reconstruction. Much of the cost of developing targeted sequencing approaches is associated with the generation of preliminary data needed for the identification of orthologous loci for probe design. In plants, identifying orthologous loci has proven difficult due to a large number of whole-genome duplication events, especially in the angiosperms (flowering plants). We used multiple sequence alignments from over 600 angiosperms for 353 putatively single-copy protein-coding genes identified by the One Thousand Plant Transcriptomes Initiative to design a set of targeted sequencing probes for phylogenetic studies of any angiosperm group. To maximize the phylogenetic potential of the probes, while minimizing the cost of production, we introduce a k-medoids clustering approach to identify the minimum number of sequences necessary to represent each coding sequence in the final probe set. Using this method, 5-15 representative sequences were selected per orthologous locus, representing the sequence diversity of angiosperms more efficiently than if probes were designed using available sequenced genomes alone. To test our approximately 80,000 probes, we hybridized libraries from 42 species spanning all higher-order groups of angiosperms, with a focus on taxa not present in the sequence alignments used to design the probes. Out of a possible 353 coding sequences, we recovered an average of 283 per species and at least 100 in all species. Differences among taxa in sequence recovery could not be explained by relatedness to the representative taxa selected for probe design, suggesting that there is no phylogenetic bias in the probe set. Our probe set, which targeted 260 kbp of coding sequence, achieved a median recovery of 137 kbp per taxon in coding regions, a maximum recovery of 250 kbp, and an additional median of 212 kbp per taxon in flanking non-coding regions across all species. These results suggest that the Angiosperms353 probe set described here is effective for any group of flowering plants and would be useful for phylogenetic studies from the species level to higher-order groups, including the entire angiosperm clade itself.


Assuntos
Sondas de DNA , Magnoliopsida/genética , Análise de Sequência de DNA/métodos , Análise por Conglomerados
15.
Molecules ; 25(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963148

RESUMO

The oxidation of primary alcohols under mechanochemical conditions in a Spex8000M Mixer/Mill was investigated. To facilitate ease of separation and recyclability, a polystyrene-bound version of a TEMPO catalyst was employed. When paired with Oxone® in a stainless-steel vial with a stainless-steel ball, several primary alcohols were successfully oxidized to the corresponding carboxylic acids. The product was isolated using gravity filtration, which also allowed for the polystyrene-bound TEMPO catalyst to be recovered and reused in subsequent oxidation reactions. Furthermore, it was demonstrated that the size and steric hindrance of the primary alcohol does not hinder the rate of the reaction. Finally, the aldehyde was selectively obtained from a primary alcohol under ball milling conditions by using a combination of non-supported TEMPO with a copper vial and copper ball.


Assuntos
Álcoois/química , Ácidos Carboxílicos/química , Oxirredução , Catálise , Fenômenos Químicos , Fenômenos Mecânicos , Metais/química , Estrutura Molecular , Temperatura
17.
J Am Chem Soc ; 141(2): 972-980, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30601662

RESUMO

We have recently disclosed [(dtbpy)2RuCl2] as an effective precatalyst for chemoselective C-H hydroxylation of C(sp3)-H bonds and have noted a marked disparity in reaction performance between 4,4'-di- tert-butyl-2,2'-bipyridine (dtbpy)- and 2,2'-bipyridine (bpy)-derived complexes. A desire to understand the origin of this difference and to further advance this catalytic method has motivated the comprehensive mechanistic investigation described herein. Details of this reaction have been unveiled through evaluation of ligand structure-activity relationships, electrochemical and kinetic studies, and pressurized sample infusion high-resolution mass spectrometry (PSI-MS). Salient findings from this investigation include the identification of more than one active oxidant and three disparate mechanisms for catalyst decomposition/arrest. Catalyst efficiency, as measured by turnover number, has a strong inverse correlation with the rate and extent of ligand dissociation, which is dependent on the identity of bipyridyl 4,4'-substituent groups. Dissociated bipyridyl ligand is oxidized to mono- and bis- N-oxide species under the reaction conditions, the former of which is found to act as a potent catalyst poison, yielding a catalytically inactive tris-ligated [Ru(dtbpy)2(dtbpy N-oxide)]2+ complex. Insights gained through this work highlight the power of PSI-MS for studies of complex reaction processes and are guiding ongoing efforts to develop high-performance, next-generation catalyst systems for C-H hydroxylation.

18.
Mol Biol Evol ; 35(2): 354-364, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069493

RESUMO

Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution.


Assuntos
Arachis/genética , Artrópodes/genética , Transferência Genética Horizontal , Retroelementos , Animais , Sequência de Bases , Genoma de Planta , Filogenia , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA