Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 13(5): 3865, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955654

RESUMO

This work builds on a suite of studies related to the 'interplay', or lack thereof, for respiratory motion with helical tomotherapy (HT). It helps explain why HT treatments without active motion management had clinical outcomes that matched positive expectations. An analytical calculation is performed to illuminate the frequency range for which interplay-type dose errors could occur. Then, an experiment is performed which completes a suite of tests. The experiment shows the potential for a stable motion probability distribution function (PDF) with HT and respiratory motion. This PDF enables one to use a motion-robust or probabilistic optimization to intrinsically include respiratory motion into the treatment planning. The reason why HT is robust to respiratory motion is related to the beam modulation sampling of the tumor motion. Because active tracking-based motion management is more complicated for a variety of reasons, HT optimization that is robust to motion is a useful alternative for those many patients that cannot benefit from active motion management.


Assuntos
Neoplasias Pulmonares/radioterapia , Movimento , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador , Mecânica Respiratória , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Modelos Estatísticos , Probabilidade , Radiografia
2.
Acta Oncol ; 50(6): 772-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21767173

RESUMO

BACKGROUND: Traditionally, radiation therapy plans are optimized without consideration of chemotherapy. Here, we model the risk of radiation pneumonitis (RP) in the presence of a possible interaction between chemotherapy and radiation dose distribution. MATERIAL AND METHODS: Three alternative treatment plans are compared in 18 non-small cell lung cancer patients previously treated with helical tomotherapy; the tomotherapy plan, an intensity modulated proton therapy plan (IMPT) and a three dimensional conformal radiotherapy (3D-CRT) plan. All plans are optimized without consideration of the chemotherapy effect. The effect of chemotherapy is modeled as an independent cell killing process using a uniform chemotherapy equivalent radiation dose (CERD) added to the entire organ at risk. We estimate the risk of grade 3 or higher RP (G3RP) using the critical volume model. RESULTS: The mean risk of clinical G3RP at zero CERD is 5% for tomotherapy (range: 1-18 %) and 14% for 3D-CRT (range 2-49%). When the CERD exceeds 9 Gy, however, the risk of RP with the tomotherapy plans become higher than the 3D-CRT plans. The IMPT plans are less toxic both at zero CERD (mean 2%, range 1-5%) and at CERD = 10 Gy (mean 7%, range 1-28%). Tomotherapy yields a lower risk of RP than 3D-CRT for 17/18 patients at zero CERD, but only for 7/18 patients at CERD = 10 Gy. IMPT gives the lowest risk of all plans for 17/18 patients at zero CERD and for all patients with CERD = 10 Gy. CONCLUSIONS: The low dose bath from highly conformal photon techniques may become relevant for lung toxicity when radiation is combined with cytotoxic chemotherapy as shown here. Proton therapy allows highly conformal delivery while minimizing the low dose bath potentially interacting with chemotherapy. Thus, intensive drug-radiation combinations could be an interesting indication for selecting patients for proton therapy. It is likely that the IMRT plans would perform better if the CERD was accounted for during optimization, but more clinical data is required to facilitate evidence-based plan optimization in the multi-modality setting.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/efeitos adversos , Neoplasias Pulmonares/terapia , Fótons/efeitos adversos , Prótons/efeitos adversos , Pneumonite por Radiação/etiologia , Humanos , Método de Monte Carlo , Fatores de Risco , Resultado do Tratamento
3.
J Appl Clin Med Phys ; 12(3): 3533, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21844866

RESUMO

The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc.


Assuntos
Neoplasias/radioterapia , Neoplasias/cirurgia , Fótons/uso terapêutico , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Cinética , Neoplasias/patologia , Aceleradores de Partículas , Lesões por Radiação/patologia , Dosagem Radioterapêutica
4.
Front Comput Neurosci ; 14: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372938

RESUMO

Traditionally, radiologists have crudely quantified tumor extent by measuring the longest and shortest dimension by dragging a cursor between opposite boundary points across a single image rather than full segmentation of the volumetric extent. For algorithmic-based volumetric segmentation, the degree of radiologist experiential involvement varies from confirming a fully automated segmentation, to making a single drag on an image to initiate semi-automated segmentation, to making multiple drags and clicks on multiple images during interactive segmentation. An experiment was designed to test an algorithm that allows various levels of interaction. Given the ground-truth of the BraTS training data, which delimits the brain tumors of 285 patients on multi-spectral MR, a computer simulation mimicked the process that a radiologist would follow to perform segmentation with real-time interaction. Clicks and drags were placed only where needed in response to the deviation between real-time segmentation results and assumed radiologist's goal, as provided by the ground-truth. Results of accuracy for various levels of interaction are presented along with estimated elapsed time, in order to measure efficiency. Average total elapsed time, including loading the study through confirming 3D contours, was 46 s.

5.
Phys Med Biol ; 53(18): 4855-73, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18711250

RESUMO

The purpose of this study is to explain the unplanned longitudinal dose modulations that appear in helical tomotherapy (HT) dose distributions in the presence of irregular patient breathing. This explanation is developed by the use of longitudinal (1D) simulations of mock and surrogate data and tested with a fully 4D HT delivered plan. The 1D simulations use a typical mock breathing function which allows more flexibility to adjust various parameters. These simplified simulations are then made more realistic by using 100 surrogate waveforms all similarly scaled to produce longitudinal breathing displacements. The results include the observation that, with many waveforms used simultaneously, a voxel-by-voxel probability of a dose error from breathing is found to be proportional to the realistically random breathing amplitude relative to the beam width if the PTV is larger than the beam width and the breathing displacement amplitude. The 4D experimental test confirms that regular breathing will not result in these modulations because of the insensitivity to leaf motion for low-frequency dynamics such as breathing. These modulations mostly result from a varying average of the breathing displacements along the beam edge gradients. Regular breathing has no displacement variation over many breathing cycles. Some low-frequency interference is also possible in real situations. In the absence of more sophisticated motion management, methods that reduce the breathing amplitude or make the breathing very regular are indicated. However, for typical breathing patterns and magnitudes, motion management techniques may not be required with HT because typical breathing occurs mostly between fundamental HT treatment temporal and spatial scales. A movement beyond only discussing margins is encouraged for intensity modulated radiotherapy such that patient and machine motion interference will be minimized and beneficial averaging maximized. These results are found for homogeneous and longitudinal on-axis delivery for unplanned longitudinal dose modulations.


Assuntos
Artefatos , Neoplasias Pulmonares/radioterapia , Modelos Biológicos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Mecânica Respiratória , Carga Corporal (Radioterapia) , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Modelos Estatísticos , Movimento , Dosagem Radioterapêutica
6.
Med Phys ; 45(10): e820-e828, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30248184

RESUMO

BACKGROUND: This article is a summary of the quantitative imaging subgroup of the 2017 AAPM Practical Big Data Workshop (PBDW-2017) on progress and challenges in big data applied to cancer treatment and research supplemented by a draft white paper following an American Association of Physicists in Medicine FOREM meeting on Imaging Genomics in 2014. AIMS: The goal of PBDW-2017 was to close the gap between theoretical vision and practical experience with encountering and solving challenges in curating and analyzing data. CONCLUSIONS: Recommendations based on the meetings are summarized.


Assuntos
Bases de Dados Factuais , Diagnóstico por Imagem/estatística & dados numéricos , Informática Médica , Física , Relatório de Pesquisa , Sociedades Médicas/estatística & dados numéricos , Humanos , Neoplasias/diagnóstico por imagem , Fluxo de Trabalho
7.
Int J Radiat Oncol Biol Phys ; 68(3): 935-42, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17467923

RESUMO

PURPOSE: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. METHODS AND MATERIALS: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD(mean)) values were compared. RESULTS: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value <0.05. The mean V100 was significantly lower for IB (12% vs. 15% for PT, 18% for ST, and 26% for 3D-CRT). A greater significant differential was seen when comparing V50 with mean values of 24%, 43%, 47%, and 52% for IB, PT, ST, and 3D-CRT, respectively. The IB and PT were similar and delivered an average lung NTD(mean) dose of 1.3 Gy(3) and 1.2 Gy(3), respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. CONCLUSIONS: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals.


Assuntos
Braquiterapia/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Tomografia Computadorizada por Raios X/métodos , Braquiterapia/instrumentação , Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/cirurgia , Cateterismo/instrumentação , Cateterismo/métodos , Humanos , Mastectomia Segmentar , Decúbito Ventral , Dosagem Radioterapêutica , Decúbito Dorsal , Resultado do Tratamento
8.
Int J Radiat Oncol Biol Phys ; 68(5): 1572-8, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17570608

RESUMO

PURPOSE: To introduce a four-dimensional (4D) tomotherapy treatment technique with improved motion control and patient tolerance. METHODS AND MATERIALS: Computed tomographic images at 10 breathing phases were acquired for treatment planning. The full exhalation phase was chosen as the planning phase, and the CT images at this phase were used as treatment-planning images. Region of interest delineation was the same as in traditional treatment planning, except that no breathing motion margin was used in clinical target volume-planning target volume expansion. The correlation between delivery and breathing phases was set assuming a constant gantry speed and a fixed breathing period. Deformable image registration yielded the deformation fields at each phase relative to the planning phase. With the delivery/breathing phase correlation and voxel displacements at each breathing phase, a 4D tomotherapy plan was obtained by incorporating the motion into inverse treatment plan optimization. A combined laser/spirometer breathing tracking system has been developed to monitor patient breathing. This system is able to produce stable and reproducible breathing signals representing tidal volume. RESULTS: We compared the 4D tomotherapy treatment planning method with conventional tomotherapy on a static target. The results showed that 4D tomotherapy can achieve dose distributions on a moving target similar to those obtained with conventional delivery on a stationary target. Regular breathing motion is fully compensated by motion-incorporated breathing-synchronized delivery planning. Four-dimensional tomotherapy also has close to 100% duty cycle and does not prolong treatment time. CONCLUSION: Breathing-synchronized delivery is a feasible 4D tomotherapy treatment technique with improved motion control and patient tolerance.


Assuntos
Neoplasias Pulmonares/radioterapia , Pulmão/fisiologia , Movimento , Radioterapia de Intensidade Modulada/métodos , Respiração , Tomografia Computadorizada Espiral/métodos , Algoritmos , Calibragem , Estudos de Viabilidade , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação
9.
Int J Radiat Oncol Biol Phys ; 69(2): 589-97, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17869672

RESUMO

PURPOSE: To evaluate the feasibility of using tomotherapy to deliver whole brain radiotherapy with hippocampal avoidance, hypothesized to reduce the risk of memory function decline, and simultaneously integrated boost to brain metastases to improve intracranial tumor control. METHODS AND MATERIALS: Ten patients treated with radiosurgery and whole brain radiotherapy underwent repeat planning using tomotherapy with the original computed tomography scans and magnetic resonance imaging-computed tomography fusion-defined target and normal structure contours. The individually contoured hippocampus was used as a dose-limiting structure (<6 Gy); the whole brain dose was prescribed at 32.25 Gy to 95% in 15 fractions, and the simultaneous boost doses to individual brain metastases were 63 Gy to lesions >or=2.0 cm in the maximal diameter and 70.8 Gy to lesions <2.0 cm. The plans were generated with a field width (FW) of 2.5 cm and, in 5 patients, with a FW of 1.0 cm. The plans were compared regarding conformation number, prescription isodose/target volume ratio, target coverage, homogeneity index, and mean normalized total dose. RESULTS: A 1.0-cm FW compared with a 2.5-cm FW significantly improved the dose distribution. The mean conformation number improved from 0.55 +/- 0.16 to 0.60 +/- 0.13. Whole brain homogeneity improved by 32% (p <0.001). The mean normalized total dose to the hippocampus was 5.9 +/- 1.3 Gy(2) and 5.8 +/- 1.9 Gy(2) for 2.5- and 1.0-cm FW, respectively. The mean treatment delivery time for the 2.5- and 1.0-cm FW plans was 10.2 +/- 1.0 and 21.8 +/- 1.8 min, respectively. CONCLUSION: Composite tomotherapy plans achieved three objectives: homogeneous whole brain dose distribution equivalent to conventional whole brain radiotherapy; conformal hippocampal avoidance; and radiosurgically equivalent dose distributions to individual metastases.


Assuntos
Neoplasias Encefálicas/radioterapia , Irradiação Craniana/métodos , Hipocampo/efeitos da radiação , Lesões por Radiação/prevenção & controle , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada Espiral/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Olho/efeitos da radiação , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/prevenção & controle , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
10.
Med Dosim ; 32(3): 196-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17707199

RESUMO

The purpose of this study was to measure and compare the loss of buildup to the skin of the breast in the prone position due to 2 different positioning systems during tangential external beam irradiation. Two experiments were performed; one with a standard nylon-covered foam support and another with a novel helium-filled Mylar bag support. The choice of helium-filled Mylar was to reduce the contamination to as low as possible. The experiments were designed to allow a surface dose measurement and a depth dose profile with the pads placed in the path of the beam in front of the detector. All measurements were taken using a Capintec PS-033 thin-window parallel plate ionization chamber. The standard nylon-covered foam pad caused the surface dose to rise as it got closer to the skin. When the pad was directly touching the surface, the surface dose increased by 300% compared to the result when no pad was present. This loss of buildup to the surface was similar to that of a custom bolus material. The opposite effect occurred with the use of the helium-filled Mylar bag, namely the surface dose gradually decreased as the pad got closer to the phantom. When the Mylar pad was directly touching the phantom, the surface dose was decreased by 7% compared to when no pad was present. The use of a foam pad could potentially result in a significant higher dose to the skin, resulting in an enhanced acute skin reaction. Therefore, special care should be taken in this clinical scenario and further investigation of an air- or helium-based mylar support pad should be investigated in the context of definitive breast radiation treatment.


Assuntos
Neoplasias da Mama/radioterapia , Decúbito Ventral , Pele/efeitos da radiação , Feminino , Humanos , Dosagem Radioterapêutica
11.
3D Print Med ; 3(1): 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30050979

RESUMO

BACKGROUND: Three-dimensional (3D) printing has become a useful method of fabrication for many clinical applications. It is also a technique that is becoming increasingly accessible, as the price of the necessary tools and supplies decline. One emerging, and unreported, application for 3D printing is to aid in the visualization of 3D imaging data by creating physical models of select structures of interest. METHODS: Presented here are three physical models that were fabricated from three different 3D microscopy datasets. Different methods of fabrication and imaging techniques were used in each case. RESULTS: Each model is presented in detail. This includes the imaging modality used to capture the raw data, the software used to create any computer models and the 3D printing tools used to create each model. Despite the differences in their creation, these examples follow a simple common workflow that is also detailed. CONCLUSIONS: Following these approaches, one can easily make 3D printed models from 3D microscopy datasets utilizing off the shelf commercially available software and hardware.

12.
Med Phys ; 32(1): 118-27, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15719962

RESUMO

Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the "dose-convolution" method because it is not based on "shift invariant" assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the "dose-convolution" and the "stochastic simulation" methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the "dose-convolution" method. As for all other phantoms, our method outperforms the "dose-convolution." The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on "motion-encoded dose calculation" can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose.


Assuntos
Radioterapia Conformacional/métodos , Radioterapia/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Modelos Estatísticos , Método de Monte Carlo , Movimento (Física) , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Med Phys ; 32(2): 570-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15789604

RESUMO

Current dosimetric protocols based on the absorbed dose (AAPM TG-51 and IAEA TRS-398 protocols) require calibration measurements under reference conditions. For some radiotherapy systems, this requirement cannot be met, and calibration has to be performed under nonreference experimental conditions. In order to solve this problem, both protocols can be extended by inclusion of the measured-to-reference conversion factor, k(mr). In order to determine this factor, basic dosimetric quantities, like stopping power ratios, mass attenuation coefficients and chamber correction factors have to be calculated. If measurements are not feasible, accurate Monte Carlo modeling is required. The extension of the protocols is illustrated using the case of the helical tomotherapy radiation unit, where the typical calibration measurement conditions are the 10 x 5 cm2 field size and the 85 cm surface source distance, limited by the system design. It was calculated that the k(mr) factor for this conditions is close to unity (0.997+/-0.001). In addition, the deviation of the measurement conditions from the reference conditions results in the change of the quality conversion factor (approximately 0.995-0.998, depending on the ionization chamber used). This change is the same regardless of the used calibration protocol. For smaller field sizes the corrections become more significant, resulting in the total correction factor compared to the reference conditions of up to 1.5% for the smallest considered field size of 2 x 2 cm2.


Assuntos
Radiometria/métodos , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/métodos , Radioterapia Conformacional/normas , Tomografia Computadorizada Espiral/métodos , Algoritmos , Calibragem/normas , Simulação por Computador , Guias como Assunto , Modelos Biológicos , Modelos Estatísticos , Dosagem Radioterapêutica , Radioterapia Conformacional/instrumentação , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada Espiral/normas
14.
Phys Med Biol ; 50(6): 1205-19, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15798317

RESUMO

In image-guided radiation therapy, megavoltage computerized tomography (MVCT) delivers higher dose to the patient for lower image quality than diagnostic kilovoltage CT (kVCT). One way to reduce the mean imaging dose is to reduce the imaging volume, which is often sufficient for registration and dosimetry purposes. The filtered back projection using truncated data causes artefacts that degrade the image quality. Those artefacts can be effectively reduced by wavelet-based multi-resolution analysis (WMRA), in which the detail and approximate information are reconstructed separately to bypass the non-locality of filtered back projection. In this study, WMRA was used to reconstruct local images from both very low-dose kVCT scans from a bench-top tomotherapy unit and MVCT scans from helical tomotherapy. Results show that mean imaging dose can be significantly reduced by imaging a small region of interest. In simulation, the root-mean-square error brought by the truncation is smaller than 1-2% and depends on the level of dose reduction. On the other hand, the same mean dose that would have been delivered by a low-quality global CT can be conformed to a smaller volume to improve the visibility of low-contrast organs and fine structures using WMRA. Organs at risk can be avoided during repeated daily CT imaging when irregular-shaped reconstruction areas are used. WMRA does not involve computationally expensive iterations and is suitable for image-guided radiation therapy where imaging speed is essential. Compared with extrapolation methods, errors are further reduced to improve the detection of low contrast and fine structures.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Doses de Radiação , Lesões por Radiação/prevenção & controle , Radiometria/efeitos adversos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/efeitos adversos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/efeitos adversos
15.
Phys Med Biol ; 50(4): 655-80, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15773626

RESUMO

Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm2) and the 'narrow' (1.2 x 1.2 cm2) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm is demonstrated to be the most accurate one for multi-resolution dose calculations.


Assuntos
Algoritmos , Modelos Biológicos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Tomografia Computadorizada Espiral/métodos , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Am J Nucl Med Mol Imaging ; 5(1): 1-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25625022

RESUMO

Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with (18)F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents.

17.
Med Phys ; 31(2): 191-200, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15000604

RESUMO

A method to quickly modify a treatment plan in adaptive radiotherapy was proposed and studied. The method is based on a Cimmino-type algorithm in linear programming. The fast convergence speed is achieved by over-relaxing the algorithm relaxation parameter from its sufficient convergence range of (0, 2) to (0, infinity). The algorithm parameters are selected so that the over-relaxed Cimmino (ORC) algorithm can effectively approximate an unconstrained re-optimization process in adaptive radiotherapy. To demonstrate the effectiveness and flexibility of the proposed method in adaptive radiotherapy, two scenarios with different organ motion/deformation of one nasopharyngeal case were presented with comparisons made between this method and the re-optimization method. In both scenarios, the ORC algorithm modified treatment plans have dose distributions that are similar to those given by the re-optimized treatment plans. It takes us using the ORC algorithm to finish a treatment plan modification at least three times faster than the re-optimization procedure compared.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/métodos , Algoritmos , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Neoplasias Nasofaríngeas/radioterapia , Radioterapia Conformacional/métodos , Software , Tomografia Computadorizada por Raios X
18.
Med Phys ; 30(12): 3165-71, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14713083

RESUMO

The signal from a spirometer is directly correlated with respiratory motion and is ideal for target respiratory motion tracking. However, its susceptibility to signal drift deters its application in radiotherapy. In this work, a few approaches are investigated to control spirometer signal drift for a Bernoulli-type spirometer. A method is presented for rapid daily calibration of the spirometer to obtain a flow sensitivity function. Daily calibration assures accurate airflow measurement and also reduces signal drift. Dynamic baseline adjustment further controls the signal drift. The accuracy of these techniques was studied and it was found that the spirometer is able to provide a long-term drift-free breathing signal. The tracking error is comprised of two components: calibration error and stochastic signal baseline variation error. The calibration error is very small (1% of 3 l) and therefore negligible. The stochastic baseline variation error can be as large as 20% of the normal breathing amplitude. In view of these uncertainties, the applications of spirometers in treatment techniques that rely on breathing monitoring are discussed. Spirometer-based monitoring is noted most suitable for deep inspiration breath-hold but less important for free breathing gating techniques.


Assuntos
Análise de Falha de Equipamento/métodos , Movimento , Radioterapia Assistida por Computador/métodos , Radioterapia/instrumentação , Radioterapia/métodos , Mecânica Respiratória , Espirometria/instrumentação , Espirometria/métodos , Calibragem , Humanos , Radioterapia Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espirometria/normas
19.
Med Phys ; 29(11): 2590-605, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12462726

RESUMO

There are many benefits to having an online CT imaging system for radiotherapy, as it helps identify changes in the patient's position and anatomy between the time of planning and treatment. However, many current online CT systems suffer from a limited field-of-view (LFOV) in that collected data do not encompass the patient's complete cross section. Reconstruction of these data sets can quantitatively distort the image values and introduce artifacts. This work explores the use of planning CT data as a priori information for improving these reconstructions. Methods are presented to incorporate this data by aligning the LFOV with the planning images and then merging the data sets in sinogram space. One alignment option is explicit fusion, producing fusion-aligned reprojection (FAR) images. For cases where explicit fusion is not viable, FAR can be implemented using the implicit fusion of normal setup error, referred to as normal-error-aligned reprojection (NEAR). These methods are evaluated for multiday patient images showing both internal and skin-surface anatomical variation. The iterative use of NEAR and FAR is also investigated, as are applications of NEAR and FAR to dose calculations and the compensation of LFOV online MVCT images with kVCT planning images. Results indicate that NEAR and FAR can utilize planning CT data as imperfect a priori information to reduce artifacts and quantitatively improve images. These benefits can also increase the accuracy of dose calculations and be used for augmenting CT images (e.g., MVCT) acquired at different energies than the planning CT.


Assuntos
Algoritmos , Monitorização Intraoperatória/métodos , Neoplasias da Próstata/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Radioterapia Assistida por Computador/métodos , Técnica de Subtração , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Controle de Qualidade , Intensificação de Imagem Radiográfica/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
20.
Med Phys ; 31(2): 396-404, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15000626

RESUMO

Helical tomotherapy is a dedicated intensity modulated radiation therapy (IMRT) system with on-board imaging capability (MVCT) and therefore differs from conventional treatment units. Different design goals resulted in some distinctive radiation field characteristics. The most significant differences in the design are the lack of flattening filter, increased shielding of the collimators, treatment and imaging operation modes and narrow fan beam delivery. Radiation characteristics of the helical tomotherapy system, sensitivity studies of various incident electron beam parameters and radiation safety analyses are presented here. It was determined that the photon beam energy spectrum of helical tomotherapy is similar to that of more conventional radiation treatment units. The two operational modes of the system result in different nominal energies of the incident electron beam with approximately 6 MeV and 3.5 MeV in the treatment and imaging modes, respectively. The off-axis mean energy dependence is much lower than in conventional radiotherapy units with less than 5% variation across the field, which is the consequence of the absent flattening filter. For the same reason the transverse profile exhibits the characteristic conical shape resulting in a 2-fold increase of the beam intensity in the center. The radiation leakage outside the field was found to be negligible at less than 0.05% because of the increased shielding of the collimators. At this level the in-field scattering is a dominant source of the radiation outside the field and thus a narrow field treatment does not result in the increased leakage. The sensitivity studies showed increased sensitivity on the incident electron position because of the narrow fan beam delivery and high sensitivity on the incident electron energy, as common to other treatment systems. All in all, it was determined that helical tomotherapy is a system with some unique radiation characteristics, which have been to a large extent optimized for intensity modulated delivery.


Assuntos
Radioterapia Conformacional/métodos , Tomografia/métodos , Elétrons , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Fótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA