Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(4): 540-558, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460463

RESUMO

In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/fl mice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.SIGNIFICANCE STATEMENT mTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.


Assuntos
Células Precursoras de Oligodendrócitos , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular/fisiologia , Sistema Nervoso Central/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Knockout , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
J Neurosci ; 42(8): 1491-1509, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35022219

RESUMO

The axon initial segment (AIS), nodes of Ranvier, and the oligodendrocyte-derived myelin sheath have significant influence on the firing patterns of neurons and the faithful, coordinated transmission of action potentials (APs) to downstream brain regions. In the olfactory bulb (OB), olfactory discrimination tasks lead to adaptive changes in cell firing patterns, and the output signals must reliably travel large distances to other brain regions along highly myelinated tracts. Whether myelinated axons adapt to facilitate olfactory sensory processing is unknown. Here, we investigate the morphology and physiology of mitral cell (MC) axons in the olfactory system of adult male and female mice and show that unilateral sensory deprivation causes system-wide adaptations in axonal morphology and myelin thickness. MC spiking patterns and APs also adapted to sensory deprivation. Strikingly, myelination and MC physiology were altered on both the deprived and nondeprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.SIGNIFICANCE STATEMENT Successful transmission of information from the olfactory bulb (OB) to piriform cortex through the lateral olfactory tract (LOT) relies on synchronized arrival of action potentials (APs). The coincident arrival of APs is dependent on reliable generation of APs in the axon initial segment (AIS) and fast conduction mediated by axon myelination. Here, we studied changes in mitral cell (MC) firing and AIS structure as well as changes in myelination of the LOT on unilateral olfactory deprivation in the adult mouse. Strikingly, myelination and MC physiology were altered on both the deprived and nondeprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.


Assuntos
Axônios , Privação Sensorial , Animais , Axônios/fisiologia , Feminino , Masculino , Camundongos , Bainha de Mielina/fisiologia , Bulbo Olfatório/fisiologia , Privação Sensorial/fisiologia , Olfato/fisiologia
3.
Semin Cell Dev Biol ; 116: 16-24, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34110985

RESUMO

Oligodendrocytes are highly specialized glial cells, responsible for producing myelin in the central nervous system (CNS). The multi-stage process of oligodendrocyte development is tightly regulated to ensure proper lineage progression of oligodendrocyte progenitor cells (OPCs) to mature myelin producing oligodendrocytes. This developmental process involves complex interactions between several intrinsic signaling pathways that are modulated by an array of extrinsic factors. Understanding these regulatory processes is of crucial importance, as it may help to identify specific molecular targets both to enhance plasticity in the normal CNS and to promote endogenous recovery following injury or disease. This review describes two major regulators that play important functional roles in distinct phases of oligodendrocyte development: OPC proliferation and differentiation. Specifically, we highlight the roles of the extracellular astrocyte/radial glia-derived protein Endothelin-1 in OPC proliferation and the intracellular Akt/mTOR pathway in OPC differentiation. Lastly, we reflect on how recent advances in neuroscience and scientific technology will enable greater understanding into how intrinsic and extrinsic regulators interact to generate oligodendrocyte diversity.


Assuntos
Oligodendroglia/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos
4.
Glia ; 71(6): 1429-1450, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794545

RESUMO

Neonatal stroke is common and causes life-long motor and cognitive sequelae. Because neonates with stroke are not diagnosed until days-months after the injury, chronic targets for repair are needed. We evaluated oligodendrocyte maturity and myelination and assessed oligodendrocyte gene expression changes using single cell RNA sequencing (scRNA seq) at chronic timepoints in a mouse model of neonatal arterial ischemic stroke. Mice underwent 60 min of transient right middle cerebral artery occlusion (MCAO) on postnatal day 10 (p10) and received 5-ethynyl-2'-deoxyuridine (EdU) on post-MCAO days 3-7 to label dividing cells. Animals were sacrificed 14 and 28-30 days post-MCAO for immunohistochemistry and electron microscopy. Oligodendrocytes were isolated from striatum 14 days post-MCAO for scRNA seq and differential gene expression analysis. The density of Olig2+ EdU+ cells was significantly increased in ipsilateral striatum 14 days post-MCAO and the majority of oligodendrocytes were immature. Density of Olig2+ EdU+ cells declined significantly between 14 and 28 days post-MCAO without a concurrent increase in mature Olig2+ EdU+ cells. By 28 days post-MCAO there were significantly fewer myelinated axons in ipsilateral striatum. scRNA seq identified a cluster of "disease associated oligodendrocytes (DOLs)" specific to the ischemic striatum, with increased expression of MHC class I genes. Gene ontology analysis suggested decreased enrichment of pathways involved in myelin production in the reactive cluster. Oligodendrocytes proliferate 3-7 days post-MCAO and persist at 14 days, but fail to mature by 28 days. MCAO induces a subset of oligodendrocytes with reactive phenotype, which may be a therapeutic target to promote white matter repair.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Camundongos , Animais , Infarto da Artéria Cerebral Média/complicações , Animais Recém-Nascidos , Acidente Vascular Cerebral/complicações , Oligodendroglia , Bainha de Mielina
5.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G115-G130, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511517

RESUMO

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.


Assuntos
Motilidade Gastrointestinal , Mucosa Intestinal , Proteína Proteolipídica de Mielina , Animais , Camundongos , Sistema Nervoso Entérico/fisiologia , Motilidade Gastrointestinal/fisiologia , Camundongos Knockout , Neuroglia/metabolismo , Neurônios/metabolismo , Proteolipídeos/metabolismo , Proteolipídeos/farmacologia , Proteína Proteolipídica de Mielina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia
6.
J Neurosci ; 41(9): 1864-1877, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33478987

RESUMO

The actin cytoskeleton is crucial for oligodendrocyte differentiation and myelination. Here we show that p21-activated kinase 1 (PAK1), a well-known actin regulator, promotes oligodendrocyte morphologic change and myelin production in the CNS. A combination of in vitro and in vivo models demonstrated that PAK1 is expressed throughout the oligodendrocyte lineage with highest expression in differentiated oligodendrocytes. Inhibiting PAK1 early in oligodendrocyte development decreased oligodendrocyte morphologic complexity and altered F-actin spreading at the tips of oligodendrocyte progenitor cell processes. Constitutively activating AKT in oligodendrocytes in male and female mice, which leads to excessive myelin wrapping, increased PAK1 expression, suggesting an impact of PAK1 during active myelin wrapping. Furthermore, constitutively activating PAK1 in oligodendrocytes in zebrafish led to an increase in myelin internode length while inhibiting PAK1 during active myelination decreased internode length. As myelin parameters influence conduction velocity, these data suggest that PAK1 may influence communication within the CNS. These data support a model in which PAK1 is a positive regulator of CNS myelination.SIGNIFICANCE STATEMENT Myelin is a critical component of the CNS that provides metabolic support to neurons and also facilitates communication between cells in the CNS. Recent data demonstrate that actin dynamics drives myelin wrapping, but how actin is regulated during myelin wrapping is unknown. The authors investigate the role of the cytoskeletal modulator PAK1 during differentiation and myelination by oligodendrocytes, the myelinating cells of the CNS. They demonstrate that PAK1 promotes oligodendrocyte differentiation and myelination by modulating the cytoskeleton and thereby internode length, thus playing a critical role in the function of the CNS.


Assuntos
Bainha de Mielina/metabolismo , Neurogênese/fisiologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
7.
J Neurosci ; 41(40): 8321-8337, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34417330

RESUMO

In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.


Assuntos
Encéfalo/metabolismo , Cuprizona/toxicidade , Células Precursoras de Oligodendrócitos/metabolismo , Remielinização/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Quelantes/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Remielinização/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
8.
J Neurosci ; 40(15): 2993-3007, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32139584

RESUMO

During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.


Assuntos
Citoesqueleto/genética , Bainha de Mielina/genética , Oligodendroglia , Serina-Treonina Quinases TOR/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Axônios , Diferenciação Celular/genética , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/ultraestrutura , Ratos , Ratos Sprague-Dawley , Células-Tronco , Serina-Treonina Quinases TOR/genética , Peixe-Zebra
9.
J Neurosci Res ; 99(3): 731-749, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197966

RESUMO

The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.


Assuntos
Córnea/metabolismo , Expressão Gênica/genética , Células de Schwann/metabolismo , Animais , Biomarcadores , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Coelhos , Fatores de Transcrição SOXE/metabolismo , Análise de Célula Única , Sindecana-3/metabolismo , Transcriptoma , Canais de Sódio Disparados por Voltagem/metabolismo
10.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810144

RESUMO

Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.


Assuntos
Biomarcadores , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Esôfago/metabolismo , Expressão Gênica , Neuroglia/imunologia , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/patologia , Feminino , Imunofluorescência , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Glia ; 68(6): 1274-1290, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31904150

RESUMO

Oligodendrocyte precursor cells (OPCs) differentiate and mature into oligodendrocytes, which produce myelin in the central nervous system. Prior studies have shown that the mechanistic target of rapamycin (mTOR) is necessary for proper myelination of the mouse spinal cord and that bone morphogenetic protein (BMP) signaling inhibits oligodendrocyte differentiation, in part by promoting expression of inhibitor of DNA binding 2 (Id2). Here we provide evidence that mTOR functions specifically in the transition from early stage OPC to immature oligodendrocyte by downregulating BMP signaling during postnatal spinal cord development. When mTOR is deleted from the oligodendrocyte lineage, expression of the FK506 binding protein 1A (FKBP12), a suppressor of BMP receptor activity, is reduced, downstream Smad activity is increased and Id2 expression is elevated. Additionally, mTOR inhibition with rapamycin in differentiating OPCs alters the transcriptional complex present at the Id2 promoter. Deletion of mTOR in oligodendroglia in vivo resulted in fewer late stage OPCs and fewer newly formed oligodendrocytes in the spinal cord with no effect on OPC proliferation or cell cycle exit. Finally, we demonstrate that inhibiting BMP signaling rescues the rapamycin-induced deficit in myelin protein expression. We conclude that mTOR promotes early oligodendrocyte differentiation by suppressing BMP signaling in OPCs.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , Sirolimo/metabolismo , Medula Espinal/metabolismo , Animais , Ciclo Celular/fisiologia , Sistema Nervoso Central/metabolismo , Camundongos , Proteínas da Mielina/metabolismo , Neurogênese , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Neurochem Res ; 45(3): 684-693, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30847860

RESUMO

Myelinating cells of both the peripheral and central nervous systems (CNSs) undergo dramatic cytoskeletal reorganization in order to differentiate and produce myelin. Myelinating oligodendrocytes in the CNS show a periodic actin pattern, demonstrating tight regulation of actin. Furthermore, recent data demonstrate that actin polymerization drives early cell differentiation and that actin depolymerization drives myelin wrapping. Dysregulation of the actin cytoskeleton in myelinating cells is seen in some disease states. This review highlights the cytoskeletal molecules that regulate differentiation of and myelination by cells of the PNS and CNS, informing our understanding of neural development, in particular myelination.


Assuntos
Citoesqueleto de Actina/metabolismo , Diferenciação Celular , Sistema Nervoso Central/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/citologia , Animais , Humanos
13.
PLoS Genet ; 13(11): e1007049, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107990

RESUMO

The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis.


Assuntos
Androgênios/fisiologia , Encéfalo/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Diferenciação Sexual , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Di-Hidrotestosterona/farmacologia , Feminino , Flutamida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/fisiologia
14.
J Neurosci ; 38(4): 787-802, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29217681

RESUMO

Shp2 is a nonreceptor protein tyrosine phosphatase that has been shown to influence neurogenesis, oligodendrogenesis, and oligodendrocyte differentiation. Furthermore, Shp2 is a known regulator of the Akt/mammalian target of rapamycin and ERK signaling pathways in multiple cellular contexts, including oligodendrocytes. Its role during later postnatal CNS development or in response to demyelination injury has not been examined. Based on the current studies, we hypothesize that Shp2 is a negative regulator of CNS myelination. Using transgenic mouse technology, we show that Shp2 is involved in oligodendrocyte differentiation and early myelination, but is not necessary for myelin maintenance. We also show that Shp2 regulates the timely differentiation of oligodendrocytes following lysolecithin-induced demyelination, although apparently normal remyelination occurs at a delayed time point. These data suggest that Shp2 is a relevant therapeutic target in demyelinating diseases such as multiple sclerosis.SIGNIFICANCE STATEMENT In the present study, we show that the protein phosphatase Shp2 is an important mediator of oligodendrocyte differentiation and myelination, both during developmental myelination as well as during myelin regeneration. We provide important insight into the signaling mechanisms regulating myelination and propose that Shp2 acts as a transient brake to the developmental myelination process. Furthermore, we show that Shp2 regulates oligodendrocyte differentiation following demyelination and therefore has important therapeutic implications in diseases such as multiple sclerosis.


Assuntos
Bainha de Mielina/metabolismo , Neurogênese/fisiologia , Oligodendroglia/citologia , Oligodendroglia/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Oligodendroglia/metabolismo , Peixe-Zebra
15.
Glia ; 67(4): 650-667, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30623975

RESUMO

Demyelination occurs following many neurological insults, most notably in multiple sclerosis (MS). Therapeutics that promote remyelination could slow the neurological decline associated with chronic demyelination; however, in vivo testing of candidate small molecule drugs and signaling cascades known to impact myelination is expensive and labor intensive. Here, we describe the development of a novel zebrafish line which uses the putative promoter of Myelin Protein Zero (mpz), a major structural protein in myelin, to drive expression of Enhanced Green Fluorescent Protein (mEGFP) specifically in the processes and nascent internodes of myelinating glia. We observe that changes in fluorescence intensity in Tg(mpz:mEGFP) larvae are a reliable surrogate for changes in myelin membrane production per se in live larvae following bath application of drugs. These changes in fluorescence are strongly predictive of changes in myelin-specific mRNAs [mpz, 36K and myelin basic protein (mbp)] and protein production (Mbp). Finally, we observe that certain drugs alter nascent internode number and length, impacting the overall amount of myelin membrane synthesized and a number of axons myelinated without significantly changing the number of myelinating oligodendrocytes. These studies demonstrate that the Tg(mpz:mEGFP) reporter line responds effectively to positive and negative small molecule regulators of myelination, and could be useful for identifying candidate drugs that specifically target myelin membrane production in vivo. Combined with high throughput cell-based screening of large chemical libraries and automated imaging systems, this transgenic line is useful for rapid large scale whole animal screening to identify novel myelinating small molecule compounds in vivo.


Assuntos
Doenças Desmielinizantes/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína P0 da Mielina/metabolismo , Bainha de Mielina/fisiologia , Animais , Animais Geneticamente Modificados , Meios de Cultivo Condicionados/farmacologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Embrião não Mamífero , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Imunossupressores/farmacologia , Larva , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteína P0 da Mielina/genética , Bainha de Mielina/ultraestrutura , Neuroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Sirolimo/farmacologia , Medula Espinal/embriologia , Medula Espinal/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
16.
Dev Neurosci ; : 1-16, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30861520

RESUMO

The incidence of stroke in children is 2.4 per 100,000 person-years and results in long-term motor and cognitive disability. In ischemic stroke, white matter (WM) is frequently injured, but is relatively understudied compared to grey matter injury. Previous research suggests that the cellular response to WM ischemic injury is different at different ages. Little is known about whether WM repair mechanisms differ in children and adults. We utilized a model of focal ischemic WM injury to determine the oligodendrocyte (OL) response to focal WM ischemic injury in juvenile and adult mice. Methods: Juvenile (21-25 days of age) versus adult (2-3 months of age) mice underwent stereotaxic injection of the potent vasoconstrictor N5-(1-iminoethyhl)-L-ornithine (L-NIO) into the lateral corpus callosum (CC). Animals were sacrificed on postoperative day 3 (acute) or 21 (chronic). Cell birth-dating was performed acutely after WM stroke with 5-ethynyl-2-deoxyuridine (EdU) injected intraperitoneally. Immunohistochemistry was performed, as well as stereology, to measure injury volume. The acute oligodendrocyte progenitor cell (OPC) proliferation and the chronic OL cell fate were determined with immunohistochemistry. Compound action potentials were measured in the CC at acute and chronic time points. Results: Acutely WM injury volume was smaller in juveniles. There was significantly greater OPC proliferation in juvenile animals (acute) compared to adults, but newly born OLs did not survive and mature into myelinating cells at chronic time points. In addition, juveniles did not have improved histological or functional recovery when compared to adults. Protecting newly born OPCs is a potential therapeutic target in children with ischemic stroke.

17.
J Neurosci ; 37(2): 397-412, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077718

RESUMO

During development, oligodendrocytes are initially specified, after which oligodendrocyte precursor cells (OPCs) migrate and proliferate before differentiating into myelinating cells. Lineage-specific programming of oligodendrocytes results from sensing environmental cues through membrane-bound receptors and related intracellular signaling molecules. Integrin-linked kinase (ILK) is an important protein that is expressed at the inner margins of the plasma membrane and can mediate some of these signals. The current studies demonstrate that ILK deletion reduces the proliferation and differentiation of OPCs in the developing CNS. There was a significant decrease in the number of OPCs and mature oligodendrocytes throughout postnatal development in Olig1Cre+/- × ILKfl/fl mice. These changes were accompanied by reduced numbers of myelinated axons. Key proteins involved in cell cycle regulation were dysregulated. Cyclin D1/D3 and cyclin-dependent kinase 2/4 (cdc2/cdc4) were downregulated and the cell cycle inhibitor protein p27 Kip1 was upregulated. Therefore, ILK deletion impaired the developmental profile, proliferation, and differentiation of OPCs by altering the expression of regulatory cytoplasmic and nuclear factors. SIGNIFICANCE STATEMENT: Integrin-linked kinase (ILK) is a scaffolding protein involved in integrating signals from the extracellular environment and communicating those signals to downstream effectors within cells. It has been proposed to regulate aspects of oligodendrocyte process extension and thereby myelination. However, the current studies demonstrate that it has an earlier impact on cells in this lineage. Knocking down ILK in Olig1-Cre-expressing cells reduces the pool of oligodendrocyte progenitor cells (OPCs). This smaller pool of OPCs results from altered cell cycle and reduced cell proliferation. These cells myelinate fewer axons than in wild-type mice and, in corpus callosum, the myelin is thinner than in controls. Interestingly, the smaller pool of spinal cord oligodendrocytes generates myelin that is of normal thickness.


Assuntos
Ciclo Celular/fisiologia , Deleção de Genes , Oligodendroglia/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ratos
18.
J Neurosci ; 37(31): 7534-7546, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28694334

RESUMO

Although the mammalian target of rapamycin (mTOR) is an essential regulator of developmental oligodendrocyte differentiation and myelination, oligodendrocyte-specific deletion of tuberous sclerosis complex (TSC), a major upstream inhibitor of mTOR, surprisingly also leads to hypomyelination during CNS development. However, the function of TSC has not been studied in the context of remyelination. Here, we used the inducible Cre-lox system to study the function of TSC in the remyelination of a focal, lysolecithin-demyelinated lesion in adult male mice. Using two different mouse models in which Tsc1 is deleted by Cre expression in oligodendrocyte progenitor cells (OPCs) or in premyelinating oligodendrocytes, we reveal that deletion of Tsc1 affects oligodendroglia differently depending on the stage of the oligodendrocyte lineage. Tsc1 deletion from NG2+ OPCs accelerated remyelination. Conversely, Tsc1 deletion from proteolipid protein (PLP)-positive oligodendrocytes slowed remyelination. Contrary to developmental myelination, there were no changes in OPC or oligodendrocyte numbers in either model. Our findings reveal a complex role for TSC in oligodendrocytes during remyelination in which the timing of Tsc1 deletion is a critical determinant of its effect on remyelination. Moreover, our findings suggest that TSC has different functions in developmental myelination and remyelination.SIGNIFICANCE STATEMENT Myelin loss in demyelinating disorders such as multiple sclerosis results in disability due to loss of axon conductance and axon damage. Encouragingly, the nervous system is capable of spontaneous remyelination, but this regenerative process often fails. Many chronically demyelinated lesions have oligodendrocyte progenitor cells (OPCs) within their borders. It is thus of great interest to elucidate mechanisms by which we might enhance endogenous remyelination. Here, we provide evidence that deletion of Tsc1 from OPCs, but not differentiating oligodendrocytes, is beneficial to remyelination. This finding contrasts with the loss of oligodendroglia and hypomyelination seen with Tsc1 or Tsc2 deletion in the oligodendrocyte lineage during CNS development and points to important differences in the regulation of developmental myelination and remyelination.


Assuntos
Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Axônios , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/metabolismo , Regeneração Nervosa/fisiologia , Células-Tronco/patologia , Proteína 1 do Complexo Esclerose Tuberosa
19.
Glia ; 66(12): 2575-2588, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240044

RESUMO

Multiple sclerosis (MS) and neuromyelitis optica (NMO) are inflammatory demyelinating disorders of the central nervous system with evidence of antibody-mediated pathology. Using ex vivo organotypic mouse cerebellar slice cultures, we have demonstrated that recombinant antibodies (rAbs) cloned from cerebrospinal fluid plasmablasts of MS and NMO patients target myelin- and astrocyte-specific antigens to induce disease-specific oligodendrocyte loss and myelin degradation. In this study, we examined glial cell responses and myelin integrity during recovery from disease-specific antibody-mediated injury. Following exposure to MS rAb and human complement (HC) in cerebellar explants, myelinating oligodendrocytes repopulated the demyelinated tissue and formed new myelin sheaths along axons. Remyelination was accompanied by pronounced microglial activation. In contrast, following treatment with NMO rAb and HC, there was rapid regeneration of astrocytes and pre-myelinating oligodendrocytes but little formation of myelin sheaths on preserved axons. Deficient remyelination was associated with progressive axonal loss and the return of microglia to a resting state. Our results indicate that antibody-mediated demyelination in MS and NMO show distinct capacities for recovery associated with differential injury to adjacent axons and variable activation of microglia. Remyelination was rapid in MS rAb plus HC-induced demyelination. By contrast, oligodendrocyte maturation and remyelination failed following NMO rAb-mediated injury despite the rapid restoration of astrocytes and preservation of axons in early lesions.


Assuntos
Cerebelo , Imunoglobulina G/toxicidade , Esclerose Múltipla/imunologia , Neuroglia/efeitos dos fármacos , Neuromielite Óptica/imunologia , Remielinização/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Aquaporina 4/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa S-Transferase pi/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/sangue , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Neuroglia/fisiologia , Neuromielite Óptica/sangue , Técnicas de Cultura de Órgãos , Remielinização/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Transcrição SOXB1/metabolismo
20.
J Biol Chem ; 291(4): 1957-1973, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26620563

RESUMO

Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD(+)-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke.


Assuntos
Lesões Encefálicas/enzimologia , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Sirtuína 3/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Animais , Apoptose , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Ceramidas/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Sirtuína 3/genética , Esfingosina N-Aciltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA