RESUMO
BACKGROUND/OBJECTIVES: Aneurysmal subarachnoid haemorrhage (aSAH) is a life-threatening event with major complications. Delayed cerebral infarct (DCI) occurs most frequently 7 days after aSAH and can last for a prolonged period. To determine the most predictive radiological scales in grading subarachnoid or ventricular haemorrhage or both for functional outcome at 3 months in a large aSAH population, we conducted a single-centre retrospective study. METHODS: A 3-year single-centre retrospective cohort study of 230 patients hospitalised for aSAH was analysed. Initial computed tomography (CT) scans in patients hospitalised for aSAH were blindly assessed using eight grading systems: the Fisher grade, modified Fisher grade, Barrow Neurological Institute scale, Hijdra scale, Intraventricular Haemorrhage (IVH) score, Graeb score and LeRoux score. RESULTS: Of 200 patients with aSAH who survived to day 7 and were included for DCI analysis, 39% of cases were complicated with DCI. The Hijdra scale was the best predictor for DCI, with a receiver operating characteristic area under the curve (ROCAUC) of 0.80 (95% confidence interval (CI), 0.74-0.85). The IVH score was the most effective grading system for predicting acute hydrocephalus, with a ROCAUC of 0.85 (95% CI, 0.79-0.89). In multivariate analysis, the Hijdra scale was the best predictor of the occurrence of DCI (hazard ratio, 1.18; 95% CI, 1.10-1.25). CONCLUSIONS: Although these results have yet to be prospectively confirmed, our findings suggest that the Hijdra scale may be a good predictor of DCI and could be useful in daily clinical practice. CLINICAL RELEVANCE STATEMENT: Better assessment of subarachnoid haemorrhage patients would allow for better prognostication and management of expectations, as well as referral for appropriate services and helping to appropriate use limited critical care resources. KEY POINTS: Aneurysmal subarachnoid haemorrhage is a life-threatening event that causes severe disability and leads to major complications such as delayed cerebral infarction. Accurate assessment of the amount of blood in the subarachnoid spaces on computed tomography with the Hijdra scale can better predict the risk of delayed cerebral infarct. The Hijdra scale could be a good triage tool for subarachnoid haemorrhage patients.
Assuntos
Hemorragia Subaracnóidea , Tomografia Computadorizada por Raios X , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/complicações , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Idoso , Adulto , Índice de Gravidade de Doença , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/etiologiaRESUMO
Usage-based theories assume that all aspects of language processing are shaped by the distributional properties of the language. The frequency not only of words but also of larger chunks plays a major role in language processing. These theories predict that the frequency of phrases influences the time needed to prepare these phrases for production and their acoustic duration. By contrast, dominant psycholinguistic models of utterance production predict no such effects. In these models, the system keeps track of the frequency of individual words but not of co-occurrences. This study investigates the extent to which the frequency of phrases impacts naming latencies and acoustic duration with a balanced design, where the same words are recombined to build high- and low-frequency phrases. The brain signal of participants is recorded so as to obtain information on the electrophysiological bases and functional locus of frequency effects. Forty-seven participants named pictures using high- and low-frequency adjective-noun phrases. Naming latencies were shorter for high-frequency than low-frequency phrases. There was no evidence that phrase frequency impacted acoustic duration. The electrophysiological signal differed between high- and low-frequency phrases in time windows that do not overlap with conceptualization or articulation processes. These findings suggest that phrase frequency influences the preparation of phrases for production, irrespective of the lexical properties of the constituents, and that this effect originates at least partly when speakers access and encode linguistic representations. Moreover, this study provides information on how the brain signal recorded during the preparation of utterances changes with the frequency of word combinations.
Assuntos
Idioma , Psicolinguística , Encéfalo , Formação de Conceito , Humanos , MemóriaRESUMO
Learning to read involves setting up associations between meaningless visual inputs (V) and their phonological representations (P). Here, we recorded the brain signals (ERPs and fMRI) associated with phonological recoding (i.e., V-P conversion processes) in an artificial learning situation in which participants had to learn the associations between 24 unknown visual symbols (Japanese Katakana characters) and 24 arbitrary monosyllabic names. During the learning phase on Day 1, the strength of V-P associations was manipulated by varying the proportion of correct and erroneous associations displayed during a two-alternative forced choice task. Recording event related potentials (ERPs) during the learning phase allowed us to track changes in the processing of these visual symbols as a function of the strength of V-P associations. We found that, at the end of the learning phase, ERPs were linearly affected by the strength of V-P associations in a time-window starting around 200ms post-stimulus onset on right occipital sites and ending around 345ms on left occipital sites. On Day 2, participants had to perform a matching task during an fMRI session and the strength of these V-P associations was again used as a probe for identifying brain regions related to phonological recoding. Crucially, we found that the left fusiform gyrus was gradually affected by the strength of V-P associations suggesting that this region is involved in the brain network supporting phonological recoding processes.
Assuntos
Encéfalo/fisiologia , Percepção de Forma/fisiologia , Linguística , Reconhecimento Visual de Modelos/fisiologia , Adulto , Aprendizagem por Associação , Mapeamento Encefálico , Comportamento de Escolha , Potenciais Evocados , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Lobo Occipital/fisiologia , Tempo de Reação , Lobo Temporal/fisiologia , Adulto JovemRESUMO
This study builds on a specific characteristic of letters of the Roman alphabet-namely, that each letter name is associated with two visual formats, corresponding to their uppercase and lowercase versions. Participants had to read aloud the names of single letters, and event-related potentials (ERPs) for six pairs of visually dissimilar upper- and lowercase letters were recorded. Assuming that the end product of processing is the same for upper- and lowercase letters sharing the same vocal response, ERPs were compared backward, starting from the onset of articulatory responses, and the first significant divergence was observed 120 ms before response onset. Given that naming responses were produced at around 414 ms, on average, these results suggest that letter processing is influenced by visual information until 294 ms after stimulus onset. This therefore provides new empirical evidence regarding the time course and interactive nature of visual letter perception processes.
Assuntos
Potenciais Evocados/fisiologia , Leitura , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Adulto JovemRESUMO
We describe a novel method for tracking the time course of visual identification processes, here applied to the specific case of letter perception. We combine a new behavioral measure of letter identification times with single-letter ERP recordings. Letter identification processes are considered to take place in those time windows in which the behavioral measure and ERPs are correlated. A first significant correlation was found at occipital electrode sites around 100 msec poststimulus onset that most likely reflects the contribution of low-level feature processing to letter identification. It was followed by a significant correlation at fronto-central sites around 170 msec, which we take to reflect letter-specific identification processes, including retrieval of a phonological code corresponding to the letter name. Finally, significant correlations were obtained around 220 msec at occipital electrode sites that may well be due to the kind of recurrent processing that has been revealed recently by TMS studies. Overall, these results suggest that visual identification processes are likely to be composed of a first (and probably preconscious) burst of visual information processing followed by a second reentrant processing on visual areas that could be critical for the conscious identification of the visual target.
Assuntos
Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
The picture-word interference paradigm (participants name target pictures while ignoring distractor words) is often used to model the planning processes involved in word production. The participants' naming times are delayed in the presence of a distractor (general interference). The size of this effect depends on the relationship between the target and distractor words. Distractors of the same semantic category create more interference (semantic interference), and distractors overlapping in phonology create less interference (phonological facilitation). The present study examined the relationships between these experimental effects, processing times, and attention in order to better understand the cognitive processes underlying participants' behavior in this paradigm. Participants named pictures with a superimposed line of Xs, semantically related distractors, phonologically related distractors, or unrelated distractors. General interference, semantic interference, and phonological facilitation effects were replicated. Distributional analyses revealed that general and semantic interference effects increase with naming times, while phonological facilitation decreases. The phonological facilitation and semantic interference effects were found to depend on the synchronicity in processing times between the planning of the picture's name and the processing of the distractor word. Finally, electroencephalographic power in the alpha band before stimulus onset varied with the position of the trial in the experiment and with repetition but did not predict the size of interference/facilitation effects. Taken together, these results suggest that experimental effects in the picture-word interference paradigm depend on processing times to both the target word and distractor word and that distributional patterns could partly reflect this dependency. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Assuntos
Idioma , Reconhecimento Visual de Modelos , Atenção , Eletroencefalografia , Humanos , SemânticaRESUMO
Single-word naming is one of the most widely used experimental paradigms for studying how we read words. Following the seminal study by Spieler and Balota (Psychological Science 8:411-416, 1997), accounting for variance in item-level naming databases has become a major challenge for computational models of word reading. Using a new large-scale database of naming responses, we first provided a precise estimate of the amount of reproducible variance that models should try to account for with such databases. Second, by using an item-level measure of delayed naming, we showed that it captures not only the variance usually explained by onset phonetic properties, but also an additional part of the variance related to output processes. Finally, by comparing the item means from this new database with the ones reported in a previous study, we found that the two sets of item response times were highly reliable (r = .94) when the variance related to onset phonetic properties and voice-key sensitivity was factored out. Overall, the present results provide new guidelines for testing computational models of word naming with item-level databases.