Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Cancer ; 153(12): 2068-2081, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602921

RESUMO

Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Humanos , Camundongos , Animais , Transdução de Sinais , Movimento Celular , Neoplasias Colorretais/genética , Proteínas de Membrana , Proteínas ADAM/genética
2.
Cell Mol Life Sci ; 79(4): 204, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35332383

RESUMO

Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development efforts that aim at overcoming the poor outcome associated with a fibrotic TME.


Assuntos
Colágeno Tipo III , Neoplasias , Colágeno , Fibrose , Humanos , Peptídeos , Microambiente Tumoral
3.
J Immunol ; 205(5): 1461-1472, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839214

RESUMO

Tumor-associated macrophages (TAMs) support tumor growth by suppressing the activity of tumor-infiltrating T cells. Consistently, TAMs are considered a major limitation for the efficacy of cancer immunotherapy. However, the molecular reason behind the acquisition of an immunosuppressive TAM phenotype is not fully clarified. During tumor growth, the extracellular matrix (ECM) is degraded and substituted with a tumor-specific collagen-rich ECM. The collagen density of this tumor ECM has been associated with poor patient prognosis but the reason for this is not well understood. In this study, we investigated whether the collagen density could modulate the immunosuppressive activity of TAMs. The murine macrophage cell line RAW 264.7 was three-dimensionally cultured in collagen matrices of low and high collagen densities mimicking healthy and tumor tissue, respectively. Collagen density did not affect proliferation or viability of the macrophages. However, whole-transcriptome analysis revealed a striking response to the surrounding collagen density, including the regulation of immune regulatory genes and genes encoding chemokines. These transcriptional changes were shown to be similar in murine bone marrow-derived macrophages and TAMs isolated from murine tumors. Strikingly, coculture assays with primary T cells showed that macrophages cultured in high-density collagen were less efficient at attracting cytotoxic T cells and capable of inhibiting T cell proliferation more than macrophages cultured in low-density collagen. Our study demonstrates that a high collagen density can instruct macrophages to acquire an immunosuppressive phenotype. This mechanism could reduce the efficacy of immunotherapy and explain the link between high collagen density and poor prognosis.


Assuntos
Colágeno/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/imunologia , Quimiocinas/imunologia , Matriz Extracelular/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transcrição Gênica/imunologia , Microambiente Tumoral/imunologia
4.
Cell Mol Life Sci ; 77(16): 3161-3176, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32100084

RESUMO

As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.


Assuntos
Colágeno/imunologia , Animais , Endocitose/imunologia , Matriz Extracelular/imunologia , Fibrose/imunologia , Humanos , Neoplasias/imunologia
5.
Blood ; 127(9): 1085-96, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26647393

RESUMO

Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMß2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.


Assuntos
Endocitose , Fibrina/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animais , Bioensaio , Receptor 1 de Quimiocina CX3C , Proliferação de Células , Fibrinolisina/metabolismo , Camundongos , Células Mieloides/metabolismo , Plasminogênio/metabolismo , Ativadores de Plasminogênio/metabolismo , Proteólise , Receptores de Quimiocinas/metabolismo , Receptores de Peptídeos/metabolismo
6.
J Biol Chem ; 291(6): 2577-82, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26719335

RESUMO

The membrane-anchored serine prostasin (CAP1/PRSS8) is essential for barrier acquisition of the interfollicular epidermis and for normal hair follicle development. Consequently, prostasin null mice die shortly after birth. Prostasin is found in two forms in the epidermis: a one-chain zymogen and a two-chain proteolytically active form, generated by matriptase-dependent activation site cleavage. Here we used gene editing to generate mice expressing only activation site cleavage-resistant (zymogen-locked) endogenous prostasin. Interestingly, these mutant mice displayed normal interfollicular epidermal development and postnatal survival, but had defects in whisker and pelage hair formation. These findings identify two distinct in vivo functions of epidermal prostasin: a function in the interfollicular epidermis, not requiring activation site cleavage, that can be mediated by the zymogen-locked version of prostasin and a proteolysis-dependent function of activated prostasin in hair follicles, dependent on zymogen conversion by matriptase.


Assuntos
Precursores Enzimáticos/metabolismo , Folículo Piloso/enzimologia , Serina Endopeptidases/metabolismo , Animais , Ativação Enzimática , Precursores Enzimáticos/genética , Camundongos , Serina Endopeptidases/genética
7.
J Biol Chem ; 291(15): 8070-89, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26663085

RESUMO

Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.


Assuntos
Colágeno/metabolismo , Gelatinases/metabolismo , Pulmão/patologia , Proteínas de Membrana/metabolismo , Fibrose Pulmonar/patologia , Serina Endopeptidases/metabolismo , Animais , Células Cultivadas , Endopeptidases , Fibroblastos/metabolismo , Fibroblastos/patologia , Gelatinases/genética , Deleção de Genes , Humanos , Pulmão/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , RNA Mensageiro/genética , Serina Endopeptidases/genética , Regulação para Cima
8.
J Pathol ; 238(1): 120-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26466547

RESUMO

In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.


Assuntos
Neoplasias Ósseas/patologia , Osteólise/metabolismo , Osteossarcoma/patologia , Receptores Mitogênicos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Invasividade Neoplásica , Osteoclastos/patologia , Osteólise/etiologia , Osteólise/patologia
9.
J Biol Chem ; 289(11): 7935-47, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24500714

RESUMO

Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members uPARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements discriminating collagen from non-collagen receptors, we constructed a series of receptor chimeras and loss- and gain-of-function mutants. Using this approach we identified a critical collagen binding loop in the suggested collagen binding region (an FN-II domain) in uPARAP/Endo180 and MR, which was different in PLA2R or DEC-205. However, we also found that an active FN-II domain was not a sufficient determinant to allow collagen internalization through these receptors. Nevertheless, this ability could be acquired by the transfer of a larger segment of uPARAP/Endo180 (the Cys-rich domain, the FN-II domain and two CTLDs) to DEC-205. These data underscore the importance of the FN-II domain in uPARAP/Endo180 and MR-mediated collagen internalization but at the same time uncover a critical interplay with flanking domains.


Assuntos
Colágeno/química , Endocitose , Lectinas Tipo C/química , Lectinas de Ligação a Manose/química , Receptores de Superfície Celular/química , Receptores Mitogênicos/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Drosophila , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Insetos , Ligantes , Receptor de Manose , Glicoproteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
10.
Biochem J ; 461(3): 487-95, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24832573

RESUMO

Membrane-anchored serine proteases serve as important regulators of multiple developmental and homoeostatic processes in mammals. TMPRSS13 (transmembrane protease, serine 13; also known as mosaic serine protease large-form, MSPL) is a membrane-anchored serine protease with unknown biological functions. In the present study, we used mice with the Tmprss13 gene disrupted by a ß-galactosidase-neomycin fusion gene insertion to study the expression and function of the membrane-anchored serine protease. High levels of Tmprss13 expression were found in the epithelia of the oral cavity, upper digestive tract and skin. Compatible with this expression pattern, Tmprss13-deficient mice displayed abnormal skin development, leading to a compromised barrier function, as measured by the transepidermal fluid loss rate of newborn mice. The present study provides the first biological function for the transmembrane serine protease TMPRSS13.


Assuntos
Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Cruzamentos Genéticos , Células Epidérmicas , Epiderme/embriologia , Epiderme/patologia , Heterozigoto , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Bucal/citologia , Mucosa Bucal/embriologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Mucosa/citologia , Mucosa/embriologia , Mucosa/metabolismo , Mucosa/patologia , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Serina Proteases/efeitos dos fármacos , Serina Proteases/genética , Trato Gastrointestinal Superior/citologia , Trato Gastrointestinal Superior/embriologia , Trato Gastrointestinal Superior/metabolismo , Trato Gastrointestinal Superior/patologia , Bexiga Urinária/citologia , Bexiga Urinária/embriologia , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Desequilíbrio Hidroeletrolítico/embriologia , Desequilíbrio Hidroeletrolítico/genética , Desequilíbrio Hidroeletrolítico/metabolismo , Desequilíbrio Hidroeletrolítico/patologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
J Biol Chem ; 288(15): 10195-204, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23413031

RESUMO

The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role.


Assuntos
Matriz Extracelular/metabolismo , Linfangiogênese/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Animais , Anticorpos Monoclonais Murinos/química , Células CHO , Cricetinae , Ativação Enzimática/genética , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Gelatinases/genética , Gelatinases/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
12.
J Pathol ; 227(1): 94-105, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22294280

RESUMO

Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180-deficient mice and littermate wild-type mice by chronic CCl(4) administration. A strong up-regulation of uPARAP/Endo180 was observed in wild-type mice, and a quantitative comparison of collagen deposits in the two groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading components. This function of uPARAP/Endo180 defines a novel role of intracellular collagen turnover in fibrosis protection.


Assuntos
Colágeno/metabolismo , Endocitose/fisiologia , Cirrose Hepática Experimental/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Linhagem Celular , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/prevenção & controle , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Regulação para Cima
13.
Front Immunol ; 14: 1228907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744345

RESUMO

Background: YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), is a secreted glycoprotein produced by various cell types including stromal, immune, and cancer cells. It contributes to cancer progression through tumor-promoting inflammation and has been shown to inhibit the cytotoxicity of T and NK lymphocytes. In vivo studies have demonstrated synergistic anti-cancer effects of blocking YKL-40 in combination with immune checkpoint inhibitors (ICIs). Biomarkers for the prediction of the response to ICIs are highly needed. We investigated the association between plasma YKL-40 and clinical benefit and survival in patients with metastatic pancreatic cancer (mPC) receiving ICIs and stereotactic body radiotherapy (SBRT). Methods: Blood samples were collected from 84 patients with mPC who participated in the randomized phase II CheckPAC study, in which patients received nivolumab with or without ipilimumab combined with a single fraction of SBRT. Plasma YKL-40 was measured using a commercial ELISA kit. Results: Elevated baseline plasma YKL-40 was an independent predictor of shorter overall survival (OS) (HR 2.19, 95% CI 1.21-3.95). A ≥ 40% decrease in plasma YKL-40 during treatment was associated with longer progression-free survival (p = 0.009) and OS (p = 0.0028). There was no correlation between plasma YKL-40 and the tumor burden marker CA19-9 at baseline or during treatment. Conclusion: This study contributes new knowledge regarding YKL-40 as a predictor of clinical benefit from ICIs and radiotherapy. These exploratory results warrant further investigation of YKL-40 as a biomarker for patients treated with immunotherapies. Clinical trial registration: Clinicaltrials.gov, identifier NCT02866383.

14.
J Biol Chem ; 286(37): 32736-48, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21768090

RESUMO

Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.


Assuntos
Colágeno Tipo IV/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Linhagem Celular Tumoral , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Glicosilação , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Biol Chem ; 286(30): 26996-7010, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652704

RESUMO

The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include ß1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. ß1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.


Assuntos
Colágeno/metabolismo , Fibroblastos/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Monoclonais Murinos/farmacologia , Células CACO-2 , Colágeno/genética , Células HEK293 , Células HeLa , Humanos , Receptor de Manose , Lectinas de Ligação a Manose/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células NIH 3T3 , Fagocitose , Receptores de Superfície Celular/genética
16.
Matrix Biol Plus ; 13: 100101, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35198964

RESUMO

Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.

17.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998057

RESUMO

Macrophages in the tumor microenvironment have a substantial impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of A Disintegrin and Metalloproteinase (ADAM) proteases, which are key mediators of cell-cell signaling, to the expression of protumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several protumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified heparin-binding EGF (HB-EGF) and amphiregulin, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-Seq and ELISA experiments revealed that ADAM17-dependent HB-EGF ligand release induced the expression and secretion of CXCL chemokines in macrophages, which in turn stimulated cancer cell invasion. In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.


Assuntos
Proteína ADAM17 , Desintegrinas , Macrófagos , Invasividade Neoplásica , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Anfirregulina , Animais , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Heparina , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Ligantes , Macrófagos/metabolismo , Camundongos , Microambiente Tumoral
18.
Matrix Biol ; 111: 307-328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878760

RESUMO

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.


Assuntos
Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Trombospondina 1/metabolismo , Animais , Colágeno/metabolismo , Endocitose , Ligantes , Camundongos , Camundongos Knockout , Proteômica , Trombospondina 1/genética
19.
Nat Commun ; 12(1): 2550, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953176

RESUMO

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanoma/genética , Melanoma/metabolismo , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Transcriptoma
20.
Matrix Biol Plus ; 1: 100003, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33543002

RESUMO

Macrophage plasticity, cellular origin, and phenotypic heterogeneity are perpetual challenges for studies addressing the biology of this pivotal immune cell in development, homeostasis, and tissue remodeling/repair. Consequently, a myriad of macrophage subtypes has been described in these contexts. To facilitate the identification of functional macrophage subtypes in vivo, here we used a flow cytometry-based assay that allows for detailed phenotyping of macrophages engaged in extracellular matrix (ECM) degradation. Of the five macrophage subtypes identified in the remodeling dermis by using this assay, collagen degradation was primarily executed by Ly6C - CCR2 + and Ly6C - CCR2 low macrophages via mannose receptor-dependent collagen endocytosis, while Ly6C + CCR2 + macrophages were the dominant fibrin-endocytosing cells. Unexpectedly, the CCL2/MCP1-CCR2 signaling axis was critical for both collagen and fibrin degradation, while collagen degradation was independent of IL-4Ra signaling. Furthermore, the cytokine GM-CSF selectively enhanced collagen degradation by Ly6C + CCR2 + macrophages. This study reveals distinct subsets of macrophages engaged in ECM turnover and identifies novel wound healing-associated functions for CCL2 and GM-CSF inflammatory cytokines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA