Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(8): 1308-1324, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34740256

RESUMO

Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients' keratinocyte clonogenicity impairment.


Assuntos
Cardiomiopatias , Epidermólise Bolhosa Simples , Proteínas Repressoras/genética , Anormalidades da Pele , Cardiomiopatias/patologia , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Simples/patologia , Feminino , Humanos , Queratinócitos/metabolismo , Queratinas/metabolismo , Mutação , Gravidez , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Anormalidades da Pele/patologia
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834892

RESUMO

Most oropharyngeal squamous cell carcinomas (OPSCCs) are human papillomavirus (HPV)-associated, high-risk (HR) cancers that show a better response to chemoradiotherapy and are associated with improved survival. Nucleophosmin (NPM, also called NPM1/B23) is a nucleolar phosphoprotein that plays different roles within the cell, such as ribosomal synthesis, cell cycle regulation, DNA damage repair and centrosome duplication. NPM is also known as an activator of inflammatory pathways. An increase in NPM expression has been observed in vitro in E6/E7 overexpressing cells and is involved in HPV assembly. In this retrospective study, we investigated the relationship between the immunohistochemical (IHC) expression of NPM and HR-HPV viral load, assayed by RNAScope in situ hybridization (ISH), in ten patients with histologically confirmed p16-positive OPSCC. Our findings show that there is a positive correlation between NPM expression and HR-HPV mRNA (Rs = 0.70, p = 0.03), and a linear regression (r2 = 0.55; p = 0.01). These data support the hypothesis that NPM IHC, together with HPV RNAScope, could be used as a predictor of transcriptionally active HPV presence and tumor progression, which is useful for therapy decisions. This study includes a small cohort of patients and, cannot report conclusive findings. Further studies with large series of patients are needed to support our hypothesis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina , DNA Viral/genética , Papillomavirus Humano , Nucleofosmina , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/patologia , Papillomaviridae/genética , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carga Viral
3.
BMC Biol ; 19(1): 124, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134693

RESUMO

BACKGROUND: Doxorubicin (Dox) is an anti-cancer anthracycline drug that causes double-stranded DNA breaks. It is highly effective against several types of tumours; however, it also has adverse effects on regenerative populations of normal cells, such as human cardiac mesenchymal progenitor cells (hCmPCs), and its clinical use is limited by cardiotoxicity. Another known effect of Dox is nucleolar disruption, which triggers the ubiquitously expressed nucleolar phosphoprotein Nucleophosmin (NPM) to be released from the nucleolus into the cell, where it participates in the orchestration of cellular stress responses. NPM has also been observed in the extracellular space in response to different stress stimuli; however, the mechanism behind this and its functional implications are as yet largely unexplored. The aim of this study was to establish whether Dox could elicit NPM secretion in the extracellular space and to elucidate the mechanism of secretion and the effect of extracellular NPM on hCmPCs. RESULTS: We found that following the double-strand break formation in hCmPCs caused by Dox, NPM was rapidly secreted in the extracellular space by an active mechanism, in the absence of either apoptosis or necrosis. Extracellular release of NPM was similarly seen in response to ultraviolet radiation (UV). Furthermore, we observed an increase of NPM levels in the plasma of Dox-treated mice; thus, NPM release also occurred in vivo. The treatment of hCmPCs with extracellular recombinant NPM induced a decrease of cell proliferation and a response mediated through the Toll-like receptor (TLR)4. We demonstrated that NPM binds to TLR4, and via TLR4, and nuclear factor kappa B (NFkB) activation/nuclear translocation, exerts proinflammatory functions by inducing IL-6 and COX-2 gene expression. Finally, we found that in hCmPCs, NPM secretion could be driven by an autophagy-dependent unconventional mechanism that requires TLR4, since TLR4 inhibition dramatically reduced Dox-induced secretion. CONCLUSIONS: We hypothesise that the extracellular release of NPM could be a general response to DNA damage since it can be elicited by either a chemical agent such as Dox or a physical genotoxic stressor such as UV radiation. Following genotoxic stress, NPM acts similarly to an alarmin in hCmPCs, being rapidly secreted and promoting cell cycle arrest and a TLR4/NFκB-dependent inflammatory response.


Assuntos
Células-Tronco Mesenquimais , Alarminas , Animais , Apoptose , Comunicação Autócrina , Doxorrubicina/efeitos adversos , Coração , Humanos , Camundongos , NF-kappa B , Proteínas Nucleares/genética , Nucleofosmina , Comunicação Parácrina , Receptor 4 Toll-Like/genética , Raios Ultravioleta
4.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067060

RESUMO

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/metabolismo , Pericárdio/patologia , Animais , Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Mesoderma/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Transformador beta1/farmacologia
5.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916025

RESUMO

Nucleophosmin (NPM), a nucleolar multifunctional phosphoprotein, acts as a stress sensor in different cell types. NPM can be actively secreted by inflammatory cells, however its biology on endothelium remains unexplored. In this study, we show for the first time that NPM is secreted by human vein endothelial cells (HUVEC) in the early response to serum deprivation and that NPM acts as a pro-inflammatory and angiogenic molecule both in vitro and in vivo. Accordingly, 24 h of serum starvation condition induced NPM relocalization from the nucleus to cytoplasm. Interestingly, NPM was increasingly excreted in HUVEC-derived conditioned media in a time dependent fashion upon stress conditions up to 24 h. The secretion of NPM was unrelated to cell necrosis within 24 h. The treatment with exogenous and recombinant NPM (rNPM) enhanced migration as well as the Intercellular Adhesion Molecule 1 (ICAM-1) but not Vascular cell adhesion protein 1 (VCAM-1) expression and it did not affect cell proliferation. Notably, in vitro tube formation by Matrigel assay was significantly increased in HUVEC treated with rNPM compared to controls. This result was confirmed by the in vivo injection of Matrigel plug assay upon stimulation with rNPM, displaying significant enhanced number of functional capillaries in the plugs. The stimulation with rNPM in HUVEC was also associated to the increased expression of master genes regulating angiogenesis and migration, including Vascular Endothelial Growth Factor-A (VEGF-A), Hepatocyte Growth Factor (HGF), Stromal derived factor-1 (SDF-1), Fibroblast growth factor-2 (FGF-2), Platelet Derived Growth Factor-B (PDGF-B), and Matrix metallopeptidase 9 (MMP9). Our study demonstrates for the first time that NPM is physiologically secreted by somatic cells under stress condition and in the absence of cell necrosis. The analysis of the biological effects induced by NPM mainly related to a pro-angiogenic and inflammatory activity might suggest an important autocrine/paracrine role for NPM in the regulation of both phenomena.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Patológica , Proteínas Nucleares/metabolismo , Estresse Fisiológico , Células Endoteliais da Veia Umbilical Humana , Humanos , Nucleofosmina
6.
Haematologica ; 104(1): 82-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076175

RESUMO

MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the "MYB addiction" of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/ß-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/ß-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the "MYB addiction" of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival.


Assuntos
Crise Blástica/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , MicroRNAs/biossíntese , Família Multigênica , Proteínas Proto-Oncogênicas c-myb/biossíntese , RNA Neoplásico/biossíntese , Ativação Transcricional , Animais , Crise Blástica/tratamento farmacológico , Crise Blástica/genética , Crise Blástica/patologia , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myb/genética , RNA Neoplásico/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Sci (Lond) ; 132(22): 2423-2436, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30389857

RESUMO

Early recognition of vulnerable carotid plaques could help in identifying patients at high stroke risk, who may benefit from earlier revascularisation. Nowadays, different biomarkers of plaque instability have been unravelled, among these miRNAs are promising tools for the diagnosis and treatment of atherosclerosis. Inflammation, reactive oxygen species (ROS) and endothelial dysfunction play a key role in unstable plaques genesis. We showed that miR-200c induces endothelial dysfunction, ROS production and a positive mechanism among miR-200c and miR-33a/b, two miRNAs involved in atherosclerosis progression. The goal of the present study was to determine whether miR-200c could be an atherosclerosis biomarker. Carotid plaques of patients that underwent carotid endarterectomy (CEA) were assayed for miR-200c expression. miR-200c was up-regulated in carotid plaques (n=22) and its expression was higher in unstable (n=12) compared with stable (n=10) plaques. miR-200c positively correlated with instability biomarkers (i.e. monocyte chemoattractant protein-1, cicloxigenase-2 (COX2), interleukin 6 (IL6), metalloproteinase (MMP) 1 (MMP1), 9 (MMP9)) and miR-33a/b. Moreover, miR-200c negatively correlated with stability biomarkers (i.e. zinc finger E-box binding homoeobox 1 (ZEB1), endothelial nitric oxide (NO) synthase (eNOS), forkhead boxO1 (FOXO1) and Sirtuin1 (SIRT1)) (stable plaques = 15, unstable plaques = 15). Circulating miR-200c was up-regulated before CEA in 24 patients, correlated with miR-33a/b and decreased 1 day after CEA. Interestingly, 1 month after CEA, circulating miR-200c is low in patients with stable plaques (n=11) and increased to control levels, in patients with unstable plaques (n=13). Further studies are needed to establish whether miR-200c represents a circulating biomarker of plaque instability. Our results show that miR-200c is an atherosclerotic plaque progression biomarker and suggest that it may be clinically useful to identify patients at high embolic risk.


Assuntos
Artérias Carótidas/patologia , Estenose das Carótidas/genética , MicroRNAs/genética , Placa Aterosclerótica , Idoso , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/cirurgia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/patologia , Estenose das Carótidas/cirurgia , Endarterectomia das Carótidas , Feminino , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Masculino , MicroRNAs/sangue , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Ruptura Espontânea , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia
8.
Ann Vasc Surg ; 53: 190-196, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30053546

RESUMO

BACKGROUND: The aim of this study is to analyze the effects of peripheral blood mononuclear cells (PBMNCs) therapy in diabetic patients with critical limb ischemia (CLI), with particular regard to its application, as adjuvant therapy in patients underwent endovascular revascularization. METHODS: Fifty diabetic patients affected by CLI were enrolled. All patients underwent PBMNCs therapy. Thirty-two patients underwent PBMNCs therapy associated with endovascular revascularization (adjuvant therapy group). In 18 patients, who were considered nonrevascularizable or underwent unsuccessful revascularization, regenerative therapy with PBMNCs was performed as the therapeutic choice (PBMNCs therapy group). RESULTS: The median follow-up period was 10 months. The baseline and end point results in adjuvant group were as follows. The mean transcutaneous partial pressure of oxygen (TcPO2) improved from 25 ± 9.2 mmHg to 45.6 ± 19.1 mmHg (P < 0.001), and visual analogue scale (VAS) score means decreased from 8.6 ± 2.1 to 3.8 ± 3.5 (P = 0.001). In PBMNCs therapy group, the mean TcPO2 improved from 16.2 ± 7.2 mmHg to 23.5 ± 8.4 mmHg (P < 0.001), and VAS score means decreased from 9 ± 1.1 to 4.1 ± 3.3 (P = 0.001). Major amputation was observed in 3 cases (9.4%), both in adjuvant therapy group and in PBMNCs therapy one (16.7%) (P = 0.6). CONCLUSIONS: The role of cellular therapy with PBMNCs is decisive in the patients that are not susceptible to revascularization. In diabetic patients with CLI and healing resistant ulcers, the adjuvant PBMNCs therapy could represent a valid therapeutic option.


Assuntos
Procedimentos Endovasculares , Úlcera do Pé/cirurgia , Isquemia/cirurgia , Leucócitos Mononucleares/transplante , Extremidade Inferior/irrigação sanguínea , Doença Arterial Periférica/cirurgia , Idoso , Idoso de 80 Anos ou mais , Amputação Cirúrgica , Estado Terminal , Progressão da Doença , Feminino , Úlcera do Pé/diagnóstico por imagem , Úlcera do Pé/fisiopatologia , Humanos , Isquemia/diagnóstico por imagem , Isquemia/fisiopatologia , Salvamento de Membro , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Risco , Cidade de Roma , Fatores de Tempo , Resultado do Tratamento , Cicatrização
9.
Clin Sci (Lond) ; 131(18): 2397-2408, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811385

RESUMO

Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P<0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a (P<0.01; P<0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c, as early biomarkers of CVD, in paediatric FH.


Assuntos
Hiperlipoproteinemia Tipo II/metabolismo , MicroRNAs/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/fisiologia , Adolescente , Glicemia/análise , Proteína C-Reativa/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , MicroRNAs/sangue , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
10.
Int J Cancer ; 137(1): 61-72, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25450802

RESUMO

The E5 oncoprotein of the human papillomavirus type 16 (HPV16 E5) deregulates epithelial homeostasis through the modulation of receptor tyrosine kinases and their signaling. Accordingly, the fibroblast growth factor receptor 2b (FGFR2b/KGFR), epithelial splicing transcript variant of the FGFR2, is down-modulated by the viral protein expression, leading to impairment of keratinocyte differentiation. Here, we report that, in cell models of transfected human keratinocytes as well as in cervical epithelial cells containing episomal HPV16, the down-regulation of FGFR2b induced by 16E5 is associated with the aberrant expression of the mesenchymal FGFR2c isoform as a consequence of splicing switch: in fact, quantitative RT-PCR analysis showed that this molecular event is transcriptionally regulated by the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) and is able to produce effects synergistic with those caused by TGFß treatment. Immunofluorescence analysis revealed that this altered FGFR2 splicing leads to changes in the specificity for the ligands FGFs and in the cellular response, triggering epithelial-mesenchymal transition (EMT). Through 16E5 or FGFR2 silencing as well as inhibition of FGFR2 activity we demonstrated the direct role of the viral protein in the receptor isoform switching and EMT, suggesting that these early molecular events during HPV infection might represent additional mechanisms driving cervical transformation and tumor progression.


Assuntos
Células Epiteliais/virologia , Transição Epitelial-Mesenquimal , Papillomavirus Humano 16/genética , Queratinócitos/virologia , Proteínas Oncogênicas Virais/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Linhagem Celular , Colo do Útero/citologia , Colo do Útero/metabolismo , Colo do Útero/virologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Papillomavirus Humano 16/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/genética , Especificidade de Órgãos , Proteínas de Ligação a RNA/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transfecção
11.
Clin Sci (Lond) ; 129(11): 963-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26229086

RESUMO

Hypercholesterolaemia is one of the major causes of CVD (cardiovascular disease). It is associated with enhanced oxidative stress, leading to increased lipid peroxidation which in turn determines endothelial dysfunction and susceptibility to coronary vasoconstriction and atherosclerosis. Different miRNAs are involved in the pathogenesis of CVD and play an important role in inflammatory process control, therefore, together with atherogenic factors, they can stimulate atherosclerotic degeneration of the vessel walls of arteries. miR-33a and miR-33b play a pivotal role in a variety of biological processes including cholesterol homoeostasis, HDL (high-density lipoprotein)-cholesterol formation, fatty acid oxidation and insulin signalling. Our study aimed to determine whether circulating miR-33a and miR-33b expression was altered in familial hypercholesterolaemic children. Total RNA was extracted from plasma, and miR-33a and miR-33b were measured by quantitative real-time PCR. We found that miR-33a and miR-33b were significantly up-regulated in the plasma of 28 hypercholesterolaemic children compared with 25 healthy subjects (4.49±0.27-fold increase, P<0.001, and 3.21±0.39-fold increase, P<0.05 respectively), and for both miRNAs, a positive correlation with total cholesterol, LDL (low-density lipoprotein)-cholesterol, LDL-cholesterol/HDL-cholesterol ratio, apolipoprotein B, CRP (C-reactive protein) and glycaemia was found. OLS (ordinary least squares) regression analysis revealed that miR-33a was significantly affected by the presence of FH (familial hypercholesterolaemia), glycaemia and CRP (P<0.001, P<0.05 and P<0.05 respectively). The same analysis showed that miR-33b was significantly related to FH and CRP (P<0.05 and P<0.05 respectively). Although it is only explorative, the present study could be the first to point to the use of miR-33a and miR-33b as early biomarkers for cholesterol levels in childhood, once validated in independent larger cohorts.


Assuntos
Hiperlipoproteinemia Tipo II/genética , MicroRNAs/genética , Adolescente , Idade de Início , Apolipoproteína B-100/sangue , Glicemia/análise , Proteína C-Reativa/análise , Estudos de Casos e Controles , Criança , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Marcadores Genéticos , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Análise dos Mínimos Quadrados , Masculino , MicroRNAs/sangue , Valor Preditivo dos Testes , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
13.
Int J Mol Sci ; 14(9): 17319-46, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23975169

RESUMO

Oxidative stress has been demonstrated to play a causal role in different vascular diseases, such as hypertension, diabetic vasculopathy, hypercholesterolemia and atherosclerosis. Indeed, increased reactive oxygen species (ROS) production is known to impair endothelial and vascular smooth muscle cell functions, contributing to the development of cardiovascular diseases. MicroRNAs (miRNAs) are non-coding RNA molecules that modulate the stability and/or the translational efficiency of target messenger RNAs. They have been shown to be modulated in most biological processes, including in cellular responses to redox imbalance. In particular, miR-200 family members play a crucial role in oxidative-stress dependent endothelial dysfunction, as well as in cardiovascular complications of diabetes and obesity. In addition, different miRNAs, such as miR-210, have been demonstrated to play a key role in mitochondrial metabolism, therefore modulating ROS production and sensitivity. In this review, we will discuss miRNAs modulated by ROS or involved in ROS production, and implicated in vascular diseases in which redox imbalance has a pathogenetic role.


Assuntos
MicroRNAs/genética , Estresse Oxidativo/fisiologia , Doenças Vasculares/metabolismo , Animais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/genética
14.
Front Cardiovasc Med ; 9: 867813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571214

RESUMO

We previously showed that genotoxic stress induced an active extracellular release of nucleophosmin (NPM) in human cardiac mesenchymal progenitor cells, and that serum deprivation provokes NPM secretion from human endothelial cells, eliciting inflammation via nuclear factor kappa B (NF-kB) transcriptional activation. In this study, we wanted to determine whether NPM was similarly modulated in the skin and plasma of psoriatic patients (Pso). We found that NPM was induced in 6 skin biopsies compared to 6 normal skin biopsies and was markedly increased in lesional (LS) vs. non-lesional skin (NLS) biopsies. Moreover, NPM was also increased at the transcriptional levels in LS vs. NLS. Both the innate stimuli, such as lipopolysaccharides and Poly inositol-cytosine and adaptive stimuli, that is, cytokine mix, were able to induce the extracellular release of NPM in immortalized keratinocytes and human skin fibroblasts in the absence of cytotoxicity. Interestingly, NPM interacts with Toll-like receptor (TLR)4 in these cells and activates an NF-kB-dependent inflammatory pathway upregulating interleukin IL-6 and COX-2 gene expression. Finally, circulating NPM was increased in the plasma of 29 Pso compared to 29 healthy controls, and positively correlates with psoriasis area severity index (PASI) and with determinants of cardiovascular diseases (CVDs), such as pulse wave velocity, systolic pressure, and left ventricular mass. Furthermore, NPM positively correlates with miR-200c circulating levels, which we previously showed to increase in Pso and correlate with CVD progression. Our data show that circulating miR-200c is physically associated with extracellular NPM, which most probably is responsible for its extracellular release and protection upon cytokine mix via a TLR4-mechanism. In conclusion, NPM is increased in psoriasis both in the skin and plasma and might be considered a novel biologic target to counteract chronic inflammation associated with CVD risk.

15.
J Cachexia Sarcopenia Muscle ; 13(2): 1339-1359, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170869

RESUMO

BACKGROUND: Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized. METHODS: To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles. RESULTS: Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones. CONCLUSIONS: Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.


Assuntos
Histona Desacetilases , Distrofia Muscular de Duchenne , Adolescente , Animais , Criança , Citoplasma/metabolismo , Citoplasma/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Proteínas Repressoras
16.
Int J Mol Med ; 48(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34278463

RESUMO

Cell therapy is becoming an attractive alternative for the treatment of patients with no­option critical limb ischemia (CLI). The main benefits of cell therapy are the induction of therapeutic angiogenesis and neovascularization that lead to an increase in blood flow in the ischemic limb and tissue regeneration in non­healing cutaneous trophic lesions. In the present review, the current state of the art of strategies in the cell therapy field are summarized, focusing on intra­operative autologous cell concentrates in diabetic patients with CLI, examining different sources of cell concentrates and their mechanisms of action. The present study underlined the detrimental effects of the diabetic condition on different sources of autologous cells used in cell therapy, and also in delaying wound healing capacity. Moreover, relevant clinical trials and critical issues arising from cell therapy trials are discussed. Finally, the new concept of cell therapy as an adjuvant therapy to increase wound healing in revascularized diabetic patients is introduced.


Assuntos
Isquemia Crônica Crítica de Membro/terapia , Complicações do Diabetes/terapia , Animais , Transplante de Células/métodos , Isquemia Crônica Crítica de Membro/etiologia , Complicações do Diabetes/etiologia , Humanos , Transplante Autólogo/métodos , Resultado do Tratamento , Cicatrização
17.
Vasc Biol ; 3(1): R49-R68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291190

RESUMO

Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.

18.
Ital J Pediatr ; 47(1): 54, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685478

RESUMO

BACKGROUND: Transcobalamin deficiency is a rare autosomal recessive inborn error of cobalamin transport (prevalence: < 1/1000000) which clinically manifests in early infancy. CASE PRESENTATION: We describe the case of a 31 years old woman who at the age of 30 days presented with the classical clinical and laboratory signs of an inborn error of vitamin B12 metabolism. Family history revealed a sister who died at the age of 3 months with a similar clinical syndrome and with pancytopenia. She was started on empirical intramuscular (IM) cobalamin supplements (injections of hydroxocobalamin 1 mg/day for 1 week and then 1 mg twice a week) and several transfusions of washed and concentrated red blood cells. With these treatments a clear improvement in symptoms was observed, with the disappearance of vomiting, diarrhea and normalization of the full blood count. At 8 years of age injections were stopped for about two and a half months causing the appearance of pancytopenia. IM hydroxocobalamin was then restarted sine die. The definitive diagnosis could only be established at 29 years of age when a genetic evaluation revealed the homozygous c.1115_1116delCA mutation of TCN2 gene (p.Q373GfsX38). Currently she is healthy and she is taking 1 mg of IM hydroxocobalamin once a week. CONCLUSIONS: Our case report highlights that early detection of TC deficiency and early initiation of aggressive IM treatment is likely associated with disease control and an overall favorable outcome.


Assuntos
Hidroxocobalamina/uso terapêutico , Transcobalaminas/deficiência , Transcobalaminas/genética , Deficiência de Vitamina B 12/tratamento farmacológico , Deficiência de Vitamina B 12/genética , Adulto , Feminino , Humanos , Mutação
20.
Vasc Biol ; 2(1): R45-R58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923974

RESUMO

Regenerative medicine is a new therapeutic modality that aims to mend tissue damage by encouraging the reconstitution of physiological integrity. It represents an advancement over conventional therapies that allow reducing the damage but result in disease chronicization. Age-related decline in spontaneous capacity of repair, especially in organs like the heart that have very limited proliferative capacity, contributes in reducing the benefit of conventional therapy. ncRNAs are emerging as key epigenetic regulators of cardiovascular regeneration. Inhibition or replacement of miRNAs may offer reparative solutions to cardiovascular disease. The first part of this review article is devoted to illustrating novel therapies emerging from research on miRNAs. In the second part, we develop new therapeutic concepts emerging from genetics of longevity. Prolonged survival, as in supercentenarians, denotes an exceptional capacity to repair and cope with risk factors and diseases. These characteristics are shared with offspring, suggesting that the regenerative phenotype is heritable. New evidence indicates that genetic traits responsible for prolongation of health span in humans can be passed to and benefit the outcomes of animal models of cardiovascular disease. Genetic studies have also focused on determinants of accelerated senescence and related druggable targets. Evolutionary genetics assessing the genetic basis of adaptation and comparing successful and unsuccessful genetic changes in response to selection within populations represent a powerful basis to develop novel therapies aiming to prolong cardiovascular and whole organism health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA