Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(14): 148301, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862639

RESUMO

We study a minimal model involving two species of particles interacting via quorum-sensing rules. Combining simulations of the microscopic model and linear stability analysis of the associated coarse-grained field theory, we identify a mechanism for dynamical pattern formation that does not rely on the standard route of intraspecies effective attractive interactions. Instead, our results reveal a highly dynamical phase of chasing bands induced only by the combined effects of self-propulsion and nonreciprocity in the interspecies couplings. Turning on self-attraction, we find that the system may phase separate into a macroscopic domain of such chaotic chasing bands coexisting with a dilute gas. We show that the chaotic dynamics of bands at the interfaces of this phase-separated phase results in anomalously slow coarsening.

2.
Phys Rev Lett ; 128(21): 218001, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687474

RESUMO

We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.

3.
Phys Rev Lett ; 127(4): 048003, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355959

RESUMO

Working in two space dimensions, we show that the orientational order emerging from self-propelled polar particles aligning nematically is quasi-long-ranged beyond ℓ_{r}, the scale associated to induced velocity reversals, which is typically extremely large and often cannot even be measured. Below ℓ_{r}, nematic order is long-range. We construct and study a hydrodynamic theory for this de facto phase and show that its structure and symmetries differ from conventional descriptions of active nematics. We check numerically our theoretical predictions, in particular the presence of π-symmetric propagative sound modes, and provide estimates of all scaling exponents governing long-range space-time correlations.

4.
Phys Rev Lett ; 126(7): 078001, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666487

RESUMO

We study an active matter system comprised of magnetic microswimmers confined in a microfluidic channel and show that it exhibits a new type of self-organized behavior. Combining analytical techniques and Brownian dynamics simulations, we demonstrate how the interplay of nonequilibrium activity, external driving, and magnetic interactions leads to the condensation of swimmers at the center of the channel via a nonequilibrium phase transition that is formally akin to Bose-Einstein condensation. We find that the effective dynamics of the microswimmers can be mapped onto a diffusivity-edge problem, and use the mapping to build a generalized thermodynamic framework, which is verified by a parameter-free comparison with our simulations. Our work reveals how driven active matter has the potential to generate exotic classical nonequilibrium phases of matter with traits that are analogous to those observed in quantum systems.

5.
Phys Rev Lett ; 126(17): 178001, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988412

RESUMO

We show that spatial quenched disorder affects polar active matter in ways more complex and far reaching than heretofore believed. Using simulations of the 2D Vicsek model subjected to random couplings or a disordered scattering field, we find in particular that ergodicity is lost in the ordered phase, the nature of which we show to depend qualitatively on the type of quenched disorder: for random couplings, it remains long-range ordered, but qualitatively different from the pure (disorderless) case. For random scatterers, polar order varies with system size but we find strong non-self-averaging, with sample-to-sample fluctuations dominating asymptotically, which prevents us from elucidating the asymptotic status of order.

6.
Phys Rev Lett ; 123(21): 218001, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809144

RESUMO

We present a quantitative assessment of the Toner and Tu theory describing the universal scaling of fluctuations in polar phases of dry active matter. Using large-scale simulations of the Vicsek model in two and three dimensions, we find the overall phenomenology and generic algebraic scaling predicted by Toner and Tu, but our data on density correlations reveal some qualitative discrepancies. The values of the associated scaling exponents we estimate differ significantly from those conjectured in 1995. In particular, we identify a large crossover scale beyond which flocks are only weakly anisotropic. We discuss the meaning and consequences of these results.

7.
Nat Commun ; 13(1): 3036, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641506

RESUMO

Fluctuation theorems specify the non-zero probability to observe negative entropy production, contrary to a naive expectation from the second law of thermodynamics. For closed particle trajectories in a fluid, Stokes theorem can be used to give a geometric characterization of the entropy production. Building on this picture, we formulate a topological fluctuation theorem that depends only by the winding number around each vortex core and is insensitive to other aspects of the force. The probability is robust to local deformations of the particle trajectory, reminiscent of topologically protected modes in various classical and quantum systems. We demonstrate that entropy production is quantized in these strongly fluctuating systems, and it is controlled by a topological invariant. We demonstrate that the theorem holds even when the probability distributions are non-Gaussian functions of the generated heat.

8.
PLoS One ; 12(2): e0171832, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28212440

RESUMO

We propose a simple agent-based model on a network to conceptualize the allocation of limited wealth among more abundant expectations at the interplay of power, frustration, and initiative. Concepts imported from the statistical physics of frustrated systems in and out of equilibrium allow us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from or lose wealth to anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity. This picture is however dramatically ameliorated when hard constraints are imposed over agents in the form of a limiting network of transactions. There, an out of equilibrium dynamics of the networks, based on a competition between power and frustration in the decision-making of agents, leads to network coevolution. The ratio of power and frustration controls different dynamical regimes separated by kinetic transitions and characterized by drastically different values of equality. It also leads, for proper values of social initiative, to the emergence of three self-organized social classes, lower, middle, and upper class. Their dynamics, which appears mostly controlled by the middle class, drives a cyclical regime of dramatic social changes.


Assuntos
Frustração , Classe Social , Fatores Socioeconômicos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA