Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(6): 967-979, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32011687

RESUMO

Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.


Assuntos
Marcadores Genéticos , Variação Genética , Genoma Humano , RNA-Seq/métodos , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Sequenciamento Completo do Genoma/métodos , Criança , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Linhagem , Sequenciamento do Exoma
2.
Genet Med ; 21(3): 694-704, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072743

RESUMO

PURPOSE: With the advent of gene therapies for inherited retinal degenerations (IRDs), genetic diagnostics will have an increasing role in clinical decision-making. Yet the genetic cause of disease cannot be identified using exon-based sequencing for a significant portion of patients. We hypothesized that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and evaluated patients with single coding pathogenic variants in RPGRIP1 to test this hypothesis. METHODS: IRD families underwent targeted panel sequencing. Unsolved cases were explored by exome and genome sequencing looking for additional pathogenic variants. Candidate pathogenic variants were then validated by Sanger sequencing, quantitative polymerase chain reaction, and in vitro splicing assays in two cell lines analyzed through amplicon sequencing. RESULTS: Among 1722 families, 3 had biallelic loss-of-function pathogenic variants in RPGRIP1 while 7 had a single disruptive coding pathogenic variants. Exome and genome sequencing revealed potential noncoding pathogenic variants in these 7 families. In 6, the noncoding pathogenic variants were shown to lead to loss of function in vitro. CONCLUSION: Noncoding pathogenic variants were identified in 6 of 7 families with single coding pathogenic variants in RPGRIP1. The results suggest that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and RPGRIP1-mediated IRDs are more common than previously thought.


Assuntos
DNA Intergênico/genética , Proteínas/genética , Degeneração Retiniana/genética , Adulto , Mapeamento Cromossômico , Proteínas do Citoesqueleto , Análise Mutacional de DNA/métodos , DNA Intergênico/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Mutação , Linhagem , Proteínas/fisiologia , Degeneração Retiniana/etiologia , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA