Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839061

RESUMO

Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of four plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through eQTL (expression quantitative trait locus) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2; 5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2; 5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress-adaptation processes.

2.
Theor Appl Genet ; 137(7): 175, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958724

RESUMO

KEY MESSAGE: Transcriptomics and proteomics information collected on a platform can predict additive and non-additive effects for platform traits and additive effects for field traits. The effects of climate change in the form of drought, heat stress, and irregular seasonal changes threaten global crop production. The ability of multi-omics data, such as transcripts and proteins, to reflect a plant's response to such climatic factors can be capitalized in prediction models to maximize crop improvement. Implementing multi-omics characterization in field evaluations is challenging due to high costs. It is, however, possible to do it on reference genotypes in controlled conditions. Using omics measured on a platform, we tested different multi-omics-based prediction approaches, using a high dimensional linear mixed model (MegaLMM) to predict genotypes for platform traits and agronomic field traits in a panel of 244 maize hybrids. We considered two prediction scenarios: in the first one, new hybrids are predicted (CV-NH), and in the second one, partially observed hybrids are predicted (CV-POH). For both scenarios, all hybrids were characterized for omics on the platform. We observed that omics can predict both additive and non-additive genetic effects for the platform traits, resulting in much higher predictive abilities than GBLUP. It highlights their efficiency in capturing regulatory processes in relation to growth conditions. For the field traits, we observed that the additive components of omics only slightly improved predictive abilities for predicting new hybrids (CV-NH, model MegaGAO) and for predicting partially observed hybrids (CV-POH, model GAOxW-BLUP) in comparison to GBLUP. We conclude that measuring the omics in the fields would be of considerable interest in predicting productivity if the costs of omics drop significantly.


Assuntos
Genótipo , Fenótipo , Proteômica , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Proteômica/métodos , Melhoramento Vegetal/métodos , Modelos Genéticos , Genômica/métodos , Transcriptoma , Modelos Lineares , Multiômica
3.
Physiol Plant ; 174(1): e13640, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35099809

RESUMO

Root nitrogen acquisition has been proposed to be regulated by mass flow, a process by which water flow brings nutrients to the root surface, depending on a concerted regulation of the root hydraulic properties and stomatal conductance. As aquaporins play an important role in regulating transcellular water flow, we aimed at evaluating the short-term effect of high nitrogen (HN) availability on the dynamics of hydraulic parameters at both the root and cell level and the regulation of aquaporins. The effect of short-term HN (8 mM NO3 - ) treatment was investigated on 12 diverse 15-day-old maize genotypes. Root exposure to HN triggered a rapid (<4 h) increase in the root hydraulic conductivity (Lpr ) in seven genotypes while no Lpr variation was recorded for the others, allowing the separation of the genotypes into two groups (HN-responsive and HN-nonresponsive). A remarkable correlation between Lpr and the cortex cell hydraulic conductivity (Lpc ) was observed. However, while differences in gas exchange parameters were also observed, the variations were genotype-specific and not always correlated with the root hydraulic parameters. We then investigated whether HN-induced Lpr variations were linked to the activity and regulation of plasma membrane PIP aquaporins. While some changes in PIP mRNA levels were detected, this was not correlated with the protein levels. On the other hand, the rapid variation in Lpr observed in the B73 genotype was correlated with the PIP protein abundance in the plasma membrane, highlighting PIP posttranslational mechanisms in the short-term regulation of root hydraulic parameters in response to HN treatment.


Assuntos
Aquaporinas , Raízes de Plantas , Aquaporinas/genética , Aquaporinas/metabolismo , Genótipo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo
4.
Int J Mol Sci ; 19(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419811

RESUMO

Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Plantas/genética , Plantas/metabolismo , Animais , Aquaporinas/química , Transporte Biológico , Regulação da Expressão Gênica , Variação Genética , Ativação do Canal Iônico , Família Multigênica , Filogenia , Multimerização Proteica , Transdução de Sinais
5.
Plant Sci ; 264: 179-187, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28969798

RESUMO

Since the discovery of the first plant aquaporin (AQP) in 1993, our conception of the way plants control cell water homeostasis as well as their global water balance has been revisited. Plant AQPs constitute a large family of evolutionarily related channels that, in addition to water, can also facilitate the membrane diffusion of a number of small solutes, such as urea, CO2, H2O2, ammonia, metalloids, and even ions, indicating a wide range of cellular functions. At the cellular level, AQPs are subject to various regulation mechanisms leading to active/inactive channels in their target membranes. In this review, we discuss several specific questions that need to be addressed in future research. Why are so many different AQPs simultaneously expressed in specific cellular types? How is their selectivity to different solutes controlled (in particular in the case of multiple permeation properties)? What does the molecular interaction between AQPs and other molecules tell us about their regulation and their involvement in specific cellular and physiological processes? Resolving these questions will definitely help us better understand the physiological advantages that plants have to express and regulate so many AQP isoforms.


Assuntos
Aquaporinas/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Modelos Biológicos , Plantas/genética , Isoformas de Proteínas , Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Especificidade por Substrato , Ureia/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA