Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Eur Acad Dermatol Venereol ; 37 Suppl 2: 12-19, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36729401

RESUMO

INTRODUCTION: Acne is a multifactorial inflammatory disease of the pilosebaceous unit in which Cutibacterium acnes is one of the main triggers. A strong predominance of C. acnes phylotype IA1 is present in acne skin with higher biofilm organization and virulence, promoting local immuno-inflammation, especially the Th17 pathway. OBJECTIVES: We evaluated the single and combined pharmacological properties of the plant extracts, Myrtus communis (Myrtacine®) and Celastrol enriched plant cell culture (CEE) extracts on the C. acnes/Th17 pathway. METHODS: The effect of Myrtacine® on the virulence of C. acnes phylotype IA1 was quantified according to the expression of several related genes. The activity of Myrtacine® and CEE on the inflammatory cascade was assessed using monocytes-derived dendritic cells (Mo-DC) stimulated with membranes or biofilms of the C. acnes phylotype IA1. Finally, the effect of CEE on the Th17 pathway was studied using C. acnes stimulated sebocyte 2D cultures and 3D skin tissue models containing preactivated Th17 cells. RESULTS: Myrtacine® had an anti-virulence effect, evident as a significant and strong inhibition of the expression of several virulence factor genes by 60%-95% compared to untreated controls. Myrtacine® and CEE significantly inhibited proinflammatory cytokine (IL-6, IL-8, IL-12p40 and TNF-α) production by Mo-DC in response to C. acnes phylotype IA1. Interestingly, these two ingredients resulted in synergistic inhibition of most cytokines when used in combination. Finally, we demonstrated an inhibitory effect of CEE, in solution or formulated at 0.3%, specifically on IL-17 release by Th17 lymphocytes in a C. acnes-stimulated sebocyte 2D cultures and by Th17-lymphocytes integrated in a 3D skin models. CONCLUSIONS: 2D and 3D models were developed to represent relevant and specific pathways involved in acne. Myrtacine® and CEE were shown to alter one or more of these pathways, indicating their potential beneficial effects on this disease.


Assuntos
Acne Vulgar , Myrtus , Humanos , Myrtus/metabolismo , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Citocinas/metabolismo , Técnicas de Cultura de Células , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Propionibacterium acnes
2.
Photochem Photobiol ; 100(2): 477-490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37485720

RESUMO

A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.


Assuntos
Multiômica , Protetores Solares , Humanos , Pele/efeitos da radiação , Protetores Solares/farmacologia , Protetores Solares/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA