Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Euro Surveill ; 23(4)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29382414

RESUMO

IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results: In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion: These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/mortalidade , Animais , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Países Baixos/epidemiologia , RNA Viral/genética , Vigilância de Evento Sentinela , Análise de Sequência de DNA
2.
J Virol ; 89(22): 11507-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26339062

RESUMO

UNLABELLED: Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds. IMPORTANCE: Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of subsequent infection with the same or the other virus within the same breeding season and between breeding seasons. These are the only two LPAIV hemagglutinin subtypes predominating in this species. The findings suggest that H13 and H16 LPAIV cycles in black-headed gull populations are independent of each other, indicate the importance of first-year birds in LPAIV epidemiology, and emphasize the need for alternatives to avian influenza virus (AIV)-specific serum antibodies as evidence of past LPAIV infection and correlates of protection against LPAIV infection in wild birds.


Assuntos
Charadriiformes/virologia , Resistência à Doença/imunologia , Hemaglutininas Virais/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Fatores Etários , Animais , Anticorpos Antivirais/sangue , Proteção Cruzada/imunologia , Suscetibilidade a Doenças , Hemaglutininas Virais/classificação , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Imunidade Humoral/imunologia , Imunização , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Dados de Sequência Molecular , Recidiva , Eliminação de Partículas Virais/imunologia
3.
Euro Surveill ; 21(38)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27684783

RESUMO

In 2014, H5N8 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage emerged in poultry and wild birds in Asia, Europe and North America. Here, wild birds were extensively investigated in the Netherlands for HPAI H5N8 virus (real-time polymerase chain reaction targeting the matrix and H5 gene) and antibody detection (haemagglutination inhibition and virus neutralisation assays) before, during and after the first virus detection in Europe in late 2014. Between 21 February 2015 and 31 January 2016, 7,337 bird samples were tested for the virus. One HPAI H5N8 virus-infected Eurasian wigeon (Anas penelope) sampled on 25 February 2015 was detected. Serological assays were performed on 1,443 samples, including 149 collected between 2007 and 2013, 945 between 14 November 2014 and 13 May 2015, and 349 between 1 September and 31 December 2015. Antibodies specific for HPAI H5 clade 2.3.4.4 were absent in wild bird sera obtained before 2014 and present in sera collected during and after the HPAI H5N8 emergence in Europe, with antibody incidence declining after the 2014/15 winter. Our results indicate that the HPAI H5N8 virus has not continued to circulate extensively in wild bird populations since the 2014/15 winter and that independent maintenance of the virus in these populations appears unlikely.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Animais , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/sangue , Países Baixos/epidemiologia , Testes de Neutralização , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Vigilância de Evento Sentinela , Análise de Sequência de DNA
4.
Emerg Infect Dis ; 20(1): 138-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24377955

RESUMO

We sampled 7,511 black-headed gulls for influenza virus in the Netherlands during 2006-2010 and found that subtypes H13 and H16 caused annual epidemics in fledglings on colony sites. Our findings validate targeted surveillance of wild waterbirds and clarify underlying factors for influenza virus emergence in other species.


Assuntos
Charadriiformes/virologia , Vírus da Influenza A/classificação , Influenza Aviária/epidemiologia , Animais , Feminino , Masculino , Países Baixos/epidemiologia , Prevalência , Vigilância em Saúde Pública , Estações do Ano , Sorotipagem
5.
PLoS One ; 7(6): e38256, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761671

RESUMO

Avian influenza virus (AIV) surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in the Netherlands. Viral prevalence varied with the level of urbanization, with highest prevalence in low urbanized areas. Within cities virus was detected in 0.5% of birds, while seroprevalence exceeded 50%. Ring recoveries of urban wild birds sampled for virus detection demonstrated that most birds were sighted within the same city, while few were sighted in other cities or migrated up to 2659 km away from the sample location in the Netherlands. Here we show that urban birds were infected with AIVs and that urban birds were not separated completely from populations of long-distance migrants. The latter suggests that wild birds in cities may play a role in the introduction of AIVs into cities. Thus, urban bird populations should not be excluded as a human-animal interface for influenza viruses.


Assuntos
Migração Animal , Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Aviária/epidemiologia , Países Baixos/epidemiologia , Estudos Soroepidemiológicos , Reforma Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA