Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 18(8): 477-494, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28537573

RESUMO

Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.


Assuntos
Células Endoteliais/citologia , Animais , Vasos Sanguíneos/citologia , Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Vasos Linfáticos/citologia
2.
Nucleic Acids Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850155

RESUMO

Methods for modifying gene function at high spatiotemporal resolution in mice have revolutionized biomedical research, with Cre-loxP being the most widely used technology. However, the Cre-loxP technology has several drawbacks, including weak activity, leakiness, toxicity, and low reliability of existing Cre-reporters. This is mainly because different genes flanked by loxP sites (floxed) vary widely in their sensitivity to Cre-mediated recombination. Here, we report the generation, validation, and utility of iSuRe-HadCre, a new dual Cre-reporter and deleter mouse line that avoids these drawbacks. iSuRe-HadCre achieves this through a novel inducible dual-recombinase genetic cascade that ensures that cells expressing a fluorescent reporter had only transient Cre activity, that is nonetheless sufficient to effectively delete floxed genes. iSuRe-HadCre worked reliably in all cell types and for the 13 floxed genes tested. This new tool will enable the precise, efficient, and trustworthy analysis of gene function in entire mouse tissues or in single cells.

3.
EMBO J ; 40(12): e107192, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33934370

RESUMO

The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.


Assuntos
Fatores de Transcrição Forkhead/genética , Linfangiogênese , Vasos Linfáticos , Proteínas Repressoras/genética , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Morfogênese , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Repressoras/metabolismo , Estresse Mecânico
4.
Genes Dev ; 31(16): 1615-1634, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947496

RESUMO

Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.


Assuntos
Linfangiogênese , Animais , Membrana Basal/fisiologia , Carcinogênese , Inflamação/fisiopatologia , Integrinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Vasos Linfáticos/embriologia , Camundongos , Comunicação Parácrina , Fator C de Crescimento do Endotélio Vascular/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518533

RESUMO

Vascular endothelial growth factor receptor-3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell-specific depletion of integrin-linked kinase (ILK) in mouse embryos hyper-activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)-specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and ß1 integrin in vitro and in vivo, and endothelial cell-specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and ß1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with ß1 integrin and thus ensures proper development of lymphatic vessels.


Assuntos
Integrina beta1/metabolismo , Linfangiogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
6.
Haematologica ; 108(3): 772-784, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638551

RESUMO

Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear. We have localized APOLD1 to endothelial cell contacts and to Weibel-Palade bodies (WPB) where it associates with von Willebrand factor (VWF) tubules. Silencing of APOLD1 in primary human endothelial cells disrupted the cell junction-cytoskeletal interface, thereby altering endothelial permeability accompanied by spontaneous release of WPB contents. This resulted in an increased presence of WPB cargoes, notably VWF and angiopoietin-2 in the extracellular medium. Autophagy flux, previously recognized as an essential mechanism for the regulated release of WPB, was impaired in the absence of APOLD1. In addition, we report APOLD1 as a candidate gene for a novel inherited bleeding disorder across three generations of a large family in which an atypical bleeding diathesis was associated with episodic impaired microcirculation. A dominant heterozygous nonsense APOLD1:p.R49* variant segregated to affected family members. Compromised vascular integrity resulting from an excess of plasma angiopoietin-2, and locally impaired availability of VWF may explain the unusual clinical profile of APOLD1:p.R49* patients. In summary, our findings identify APOLD1 as an important regulator of vascular homeostasis and raise the need to consider testing of endothelial cell function in patients with inherited bleeding disorders without apparent platelet or coagulation defects.


Assuntos
Doenças Vasculares , Corpos de Weibel-Palade , Humanos , Fator de von Willebrand/genética , Células Endoteliais/fisiologia , Angiopoietina-2/genética , Exocitose/fisiologia , Hemostasia , Junções Intercelulares
7.
Circ Res ; 129(1): 136-154, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166072

RESUMO

Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.


Assuntos
Linfangiogênese , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/terapia , Vasos Linfáticos/anormalidades , Mutação , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Anormalidades Linfáticas/metabolismo , Anormalidades Linfáticas/patologia , Vasos Linfáticos/metabolismo , Fenótipo , Transdução de Sinais
8.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30297530

RESUMO

Endothelial cells line blood and lymphatic vessels and form intercellular junctions, which preserve vessel structure and integrity. The vascular endothelial cadherin, VE-cadherin, mediates endothelial adhesion and is indispensible for blood vessel development and permeability regulation. However, its requirement for lymphatic vessels has not been addressed. During development, VE-cadherin deletion in lymphatic endothelial cells resulted in abortive lymphangiogenesis, edema, and prenatal death. Unexpectedly, inducible postnatal or adult deletion elicited vessel bed-specific responses. Mature dermal lymph vessels resisted VE-cadherin loss and maintained button junctions, which was associated with an upregulation of junctional molecules. Very different, mesenteric lymphatic collectors deteriorated and formed a strongly hyperplastic layer of lymphatic endothelial cells on the mesothelium. This massive hyperproliferation may have been favored by high mesenteric VEGF-C expression and was associated with VEGFR-3 phosphorylation and upregulation of the transcriptional activator TAZ Finally, intestinal lacteals fragmented into cysts or became highly distended possibly as a consequence of the mesenteric defects. Taken together, we demonstrate here the importance of VE-cadherin for lymphatic vessel development and maintenance, which is however remarkably vessel bed-specific.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Derme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese , Vasos Linfáticos/metabolismo , Mesentério/embriologia , Animais , Antígenos CD/genética , Caderinas/genética , Células Endoteliais/metabolismo , Deleção de Genes , Camundongos , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Genesis ; 59(7-8): e23439, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34338433

RESUMO

Luminal valves of collecting lymphatic vessels are critical for maintaining unidirectional flow of lymph and their dysfunction underlies several forms of primary lymphedema. Here, we report on the generation of a transgenic mouse expressing the tamoxifen inducible CreERT2 under the control of Cldn11 promoter that allows, for the first time, selective and temporally controlled targeting of lymphatic valve endothelial cells. We show that within the vasculature CLDN11 is specifically expressed in lymphatic valves but is not required for their development as mice with a global loss of Cldn11 display normal valves in the mesentery. Tamoxifen treated Cldn11-CreERT2 mice also carrying a fluorescent Cre-reporter displayed reporter protein expression selectively in lymphatic valves and, to a lower degree, in venous valves. Analysis of developing vasculature further showed that Cldn11-CreERT2 -mediated recombination is induced during valve leaflet formation, and efficient labeling of valve endothelial cells was observed in mature valves. The Cldn11-CreERT2 mouse thus provides a valuable tool for functional studies of valves.


Assuntos
Claudinas/genética , Marcação de Genes/métodos , Vasos Linfáticos/metabolismo , Animais , Claudinas/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Tamoxifeno/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transgenes
10.
Development ; 145(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361560

RESUMO

Maintenance of blood vessel integrity is crucial for vascular homeostasis and is mainly controlled at the level of endothelial cell (EC) junctions. Regulation of endothelial integrity has largely been investigated in the mature quiescent vasculature. Less is known about how integrity is maintained during vascular growth and remodeling involving extensive junctional reorganization. Here, we show that embryonic mesenteric blood vascular remodeling is associated with a transient loss of venous integrity and concomitant extravasation of red blood cells (RBCs), followed by their clearance by the developing lymphatic vessels. In wild-type mouse embryos, we observed activated platelets extending filopodia at sites of inter-EC gaps. In contrast, embryos lacking the activatory C-type lectin domain family 1, member b (CLEC1B) showed extravascular platelets and an excessive number of RBCs associated with and engulfed by the first lymphatic EC clusters that subsequently form lumenized blood-filled vessels connecting to the lymphatic system. These results uncover novel functions of platelets in maintaining venous integrity and lymphatic vessels in clearing extravascular RBCs during developmental remodeling of the mesenteric vasculature. They further provide insight into how vascular abnormalities characterized by blood-filled lymphatic vessels arise.


Assuntos
Eritrócitos/citologia , Vasos Linfáticos/embriologia , Veias Mesentéricas/embriologia , Remodelação Vascular/fisiologia , Animais , Plaquetas/citologia , Feminino , Idade Gestacional , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Lectinas Tipo C/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Gravidez
11.
Circ Res ; 124(2): 225-242, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582452

RESUMO

RATIONALE: The Hippo pathway governs cellular differentiation, morphogenesis, and homeostasis, but how it regulates these processes in lymphatic vessels is unknown. OBJECTIVE: We aimed to reveal the role of the final effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), in lymphatic endothelial cell (LEC) differentiation, morphogenesis, and homeostasis. METHODS AND RESULTS: During mouse embryonic development, LEC-specific depletion of Yap/Taz disturbed both plexus patterning and valve initiation with upregulated Prox1 (prospero homeobox 1). Conversely, LEC-specific YAP/TAZ hyperactivation impaired lymphatic specification and restricted lymphatic sprouting with profoundly downregulated Prox1. Notably, lymphatic YAP/TAZ depletion or hyperactivation aggravated or attenuated pathological lymphangiogenesis in mouse cornea. Mechanistically, VEGF (vascular endothelial growth factor)-C activated canonical Hippo signaling pathway in LECs. Indeed, repression of PROX1 transcription by YAP/TAZ hyperactivation was mediated by recruitment of NuRD (nucleosome remodeling and histone deacetylase) complex and endogenous binding activity of TEAD (TEA domain family members) to the PROX1 promoter. Furthermore, YAP/TAZ hyperactivation enhanced MYC signaling and inhibited CDKN1C, leading to cell cycle dysregulation and aberrant proliferation. CONCLUSIONS: We find that YAP and TAZ play promoting roles in remodeling lymphatic plexus patterning and postnatal lymphatic valve maintenance by negatively regulating Prox1 expression. We further show that YAP and TAZ act as plastic regulators of lymphatic identity and define the Hippo signaling-mediated PROX1 transcriptional programing as a novel dynamic checkpoint underlying LEC plasticity and pathophysiology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Plasticidade Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Vasos Linfáticos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Fosfoproteínas/genética , Transdução de Sinais , Transativadores , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
12.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30783017

RESUMO

A lacteal is a blunt-ended, long, tube-like lymphatic vessel located in the center of each intestinal villus that provides a unique route for drainage of absorbed lipids from the small intestine. However, key regulators for maintaining lacteal integrity are poorly understood. Here, we explore whether and how the gut microbiota regulates lacteal integrity. Germ depletion by antibiotic treatment triggers lacteal regression during adulthood and delays lacteal maturation during the postnatal period. In accordance with compromised lipid absorption, the button-like junction between lymphatic endothelial cells, which is ultrastructurally open to permit free entry of dietary lipids into lacteals, is significantly reduced in lacteals of germ-depleted mice. Lacteal defects are also found in germ-free mice, but conventionalization of germ-free mice leads to normalization of lacteals. Mechanistically, VEGF-C secreted from villus macrophages upon MyD88-dependent recognition of microbes and their products is a main factor in lacteal integrity. Collectively, we conclude that the gut microbiota is a crucial regulator for lacteal integrity by endowing its unique microenvironment and regulating villus macrophages in small intestine.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/metabolismo , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fatores Etários , Animais , Transporte Biológico , Biomarcadores , Receptor 1 de Quimiocina CX3C/metabolismo , Imunofluorescência , Absorção Intestinal , Mucosa Intestinal/citologia , Mucosa Intestinal/ultraestrutura , Metabolismo dos Lipídeos , Camundongos , Microvasos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais
13.
14.
Development ; 144(19): 3590-3601, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851707

RESUMO

Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin.


Assuntos
Células Endoteliais/metabolismo , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Animais , Animais Recém-Nascidos , Capilares/metabolismo , Comunicação Celular , Derme/metabolismo , Matriz Extracelular/metabolismo , Feminino , Membro Posterior/metabolismo , Masculino , Mesentério/metabolismo , Morfogênese , Tamanho do Órgão
16.
Genes Dev ; 25(8): 831-44, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498572

RESUMO

Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.


Assuntos
Neurogênese/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Linfangiogênese/genética , Linfangiogênese/fisiologia , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Circ Res ; 118(3): 515-30, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26846644

RESUMO

The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Linfangiogênese , Sistema Linfático/fisiopatologia , Linfedema/fisiopatologia , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/imunologia , Sistema Cardiovascular/metabolismo , Humanos , Sistema Linfático/imunologia , Sistema Linfático/metabolismo , Linfedema/imunologia , Linfedema/metabolismo , Transdução de Sinais
18.
Arterioscler Thromb Vasc Biol ; 37(9): 1732-1735, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705793

RESUMO

OBJECTIVE: The purpose of this study was to investigate the role of Fat4 and Dachsous1 signaling in the lymphatic vasculature. APPROACH AND RESULTS: Phenotypic analysis of the lymphatic vasculature was performed in mice lacking functional Fat4 or Dachsous1. The overall architecture of lymphatic vasculature is unaltered, yet both genes are specifically required for lymphatic valve morphogenesis. Valve endothelial cells (Prox1high [prospero homeobox protein 1] cells) are disoriented and failed to form proper valve leaflets. Using Lifeact-GFP (green fluorescent protein) mice, we revealed that valve endothelial cells display prominent actin polymerization. Finally, we showed the polarized recruitment of Dachsous1 to membrane protrusions and cellular junctions of valve endothelial cells in vivo and in vitro. CONCLUSIONS: Our data demonstrate that Fat4 and Dachsous1 are critical regulators of valve morphogenesis. This study highlights that valve defects may contribute to lymphedema in Hennekam syndrome caused by Fat4 mutations.


Assuntos
Caderinas/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Caderinas/deficiência , Caderinas/genética , Células Cultivadas , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Células Endoteliais/patologia , Endotélio Linfático/patologia , Imunofluorescência , Predisposição Genética para Doença , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Linfangiectasia Intestinal/genética , Linfangiectasia Intestinal/metabolismo , Linfangiectasia Intestinal/patologia , Vasos Linfáticos/patologia , Linfedema/genética , Linfedema/metabolismo , Linfedema/patologia , Camundongos Knockout , Mutação , Fenótipo , Multimerização Proteica , Transdução de Sinais , Transfecção , Proteínas Supressoras de Tumor/genética
19.
Proc Natl Acad Sci U S A ; 112(3): 761-6, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561555

RESUMO

Angiogenesis, the formation of new blood vessels, is regulated by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). VEGFR2 is abundant in the tip cells of angiogenic sprouts, where VEGF/VEGFR2 functions upstream of the delta-like ligand 4 (DLL4)/Notch signal transduction pathway. VEGFR3 is expressed in all endothelia and is indispensable for angiogenesis during early embryonic development. In adults, VEGFR3 is expressed in angiogenic blood vessels and some fenestrated endothelia. VEGFR3 is abundant in endothelial tip cells, where it activates Notch signaling, facilitating the conversion of tip cells to stalk cells during the stabilization of vascular branches. Subsequently, Notch activation suppresses VEGFR3 expression in a negative feedback loop. Here we used conditional deletions and a Notch pathway inhibitor to investigate the cross-talk between VEGFR2, VEGFR3, and Notch in vivo. We show that postnatal angiogenesis requires VEGFR2 signaling also in the absence of Notch or VEGFR3, and that even small amounts of VEGFR2 are able to sustain angiogenesis to some extent. We found that VEGFR2 is required independently of VEGFR3 for endothelial DLL4 up-regulation and angiogenic sprouting, and for VEGFR3 functions in angiogenesis. In contrast, VEGFR2 deletion had no effect, whereas VEGFR3 was essential for postnatal lymphangiogenesis, and even for lymphatic vessel maintenance in adult skin. Knowledge of these interactions and the signaling functions of VEGFRs in blood vessels and lymphatic vessels is essential for the therapeutic manipulation of the vascular system, especially when considering multitargeted antiangiogenic treatments.


Assuntos
Neovascularização Fisiológica , Vasos Retinianos/crescimento & desenvolvimento , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Camundongos
20.
Circ Res ; 116(10): 1649-54, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25737499

RESUMO

RATIONALE: The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of vessels from pre-existing ones (angiogenesis). In contrast, mammalian lymphatic vasculature is thought to form exclusively by sprouting from embryonic veins (lymphangiogenesis). Alternative nonvenous sources of lymphatic endothelial cells have been suggested in chicken and Xenopus, but it is unclear whether they exist in mammals. OBJECTIVE: We aimed to clarify the origin of the murine dermal lymphatic vasculature. METHODS AND RESULTS: We performed lineage tracing experiments and analyzed mutants lacking the Prox1 transcription factor, a master regulator of lymphatic endothelial cell identity, in Tie2 lineage venous-derived lymphatic endothelial cells. We show that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins. Although lymphatic vessels of cervical and thoracic skin develop via sprouting from venous-derived lymph sacs, vessels of lumbar and dorsal midline skin form via assembly of non-Tie2-lineage cells into clusters and vessels through a process defined as lymphvasculogenesis. CONCLUSIONS: Our results demonstrate a significant contribution of nonvenous-derived cells to the dermal lymphatic vasculature. Demonstration of a previously unknown lymphatic endothelial cell progenitor population will now allow further characterization of their origin, identity, and functions during normal lymphatic development and in pathology, as well as their potential therapeutic use for lymphatic regeneration.


Assuntos
Linhagem da Célula , Células Endoteliais/citologia , Células Progenitoras Endoteliais/citologia , Endotélio Linfático/citologia , Linfangiogênese , Pele/irrigação sanguínea , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Células Endoteliais/metabolismo , Células Progenitoras Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Genes Reporter , Idade Gestacional , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor TIE-2/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/citologia , Veias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA