Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
2.
Cell ; 176(4): 757-774.e23, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30712866

RESUMO

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.


Assuntos
Movimento Celular/fisiologia , Miosina Tipo II/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/imunologia , Proteínas do Citoesqueleto , Feminino , Humanos , Interleucina-1alfa/metabolismo , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Fosforilação , Proteômica , Receptor Cross-Talk/fisiologia , Transdução de Sinais , Microambiente Tumoral/imunologia
3.
Nature ; 571(7763): E2, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31227820

RESUMO

Change history: In this Letter, the final two pages of the Supplementary Information, which included two tables listing primer and antibodies, respectively, were missing; see accompanying Amendment for the missing Supplementary Tables. This Letter has not been corrected online.

5.
Nature ; 572(7771): 603-608, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31462798

RESUMO

Direct investigation of the early cellular changes induced by metastatic cells within the surrounding tissue remains a challenge. Here we present a system in which metastatic cancer cells release a cell-penetrating fluorescent protein, which is taken up by neighbouring cells and enables spatial identification of the local metastatic cellular environment. Using this system, tissue cells with low representation in the metastatic niche can be identified and characterized within the bulk tissue. To highlight its potential, we applied this strategy to study the cellular environment of metastatic breast cancer cells in the lung. We report the presence of cancer-associated parenchymal cells, which exhibit stem-cell-like features, expression of lung progenitor markers, multi-lineage differentiation potential and self-renewal activity. In ex vivo assays, lung epithelial cells acquire a cancer-associated parenchymal-cell-like phenotype when co-cultured with cancer cells and support their growth. These results highlight the potential of this method as a platform for new discoveries.


Assuntos
Linhagem da Célula , Rastreamento de Células/métodos , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Tecido Parenquimatoso/patologia , Coloração e Rotulagem/métodos , Nicho de Células-Tronco , Microambiente Tumoral , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Técnicas de Cocultura , Células Epiteliais/patologia , Feminino , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Metástase Neoplásica/imunologia , Neutrófilos/patologia , Organoides/patologia , Nicho de Células-Tronco/imunologia , Microambiente Tumoral/imunologia , Proteína Vermelha Fluorescente
6.
Semin Immunol ; 57: 101598, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35221216

RESUMO

Knowledge about neutrophil biology has exponentially grown over the past decades. A high volume of investigations focusing on the characterization of their initially unappreciated multifaceted functions have grown in parallel with the immunity and the cancer fields. This has led to a significant gain in knowledge about their functions not only in tissue defence against pathogens and the collateral damage their overactivation can cause, but also their role in tissue repair and regeneration especially in the context of sterile injuries. On the other hand, the cancer field has also intensively focused its attention on neutrophil engagement in the many steps of the tumorigenic process. This review aims to draw the readers' attention to the similar functions described for neutrophils in tissue repair and in cancer. By bridging the two fields, we provide support for the hypothesis that the underlying program driving cancer-dependent exploitation of neutrophils is rooted in their physiologic tissue protection functions. In this view, cross-fertilization between the two fields will expedite the discovery of therapeutic interventions based on neutrophil targeting or their manipulation.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neoplasias/terapia , Cicatrização
7.
Breast Cancer Res ; 25(1): 125, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858168

RESUMO

PURPOSE: An elevated number of circulating neutrophils is a poor prognostic factor for breast cancer, where evidence of bone marrow cancer-dependent priming is found. However, how early this priming is detectable remains unclear. PATIENTS AND METHODS: Here, we investigate changes in circulating neutrophils from newly diagnosed breast cancer patients before any therapeutic interventions. To do this, we assessed their lifespan and their broader intracellular kinase network activation states by using the Pamgene Kinome assay which measures the activity of neutrophil kinases. RESULTS: We found sub-type specific L-selectin (CD62L) changes in circulating neutrophils as well as perturbations in their overall global kinase activity. Strikingly, breast cancer patients of different subtypes (HR+, HER2+, triple negative) exhibited distinct neutrophil kinase activity patterns indicating that quantifiable perturbations can be detected in circulating neutrophils from early breast cancer patients, that are sensitive to both hormonal and HER-2 status. We also detected an increase in neutrophils lifespan in cancer patients, independently of tumour subtype. CONCLUSIONS: Our results suggest that the tumour-specific kinase activation patterns in circulating neutrophils may be used in conjunction with other markers to identify patients with cancer from those harbouring only benign lesions of the breast. Given the important role neutrophil in breast cancer progression, the significance of this sub-type of specific priming warrants further investigation.


Assuntos
Neoplasias da Mama , Neutrófilos , Humanos , Feminino , Neutrófilos/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mama/patologia
9.
Nature ; 528(7582): 413-7, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26649828

RESUMO

Despite progress in the development of drugs that efficiently target cancer cells, treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However, the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metástase Neoplásica/patologia , Neutrófilos/metabolismo , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Modelos Animais de Doenças , Progressão da Doença , Feminino , Leucotrienos/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular/métodos , Metástase Neoplásica/tratamento farmacológico , Transplante de Neoplasias , Neutrófilos/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
10.
Biochim Biophys Acta Rev Cancer ; 1868(1): 231-238, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28501561

RESUMO

Metastasis is the main cause of death for most cancer patients. It appears clear from clinical observations that the majority of cancers, particularly carcinoma do not follow a linear model of metastatic progression, where cancer cells shed from the primary tumour, disseminate to a distant organ and immediately outgrow to form clinical metastasis. Certainly, while cancer spreading is an early event, metastasis occurs much later during tumour progression and frequently arises several years after primary tumour resection. The time spent by disseminated cancer cells (DTCs) in a distant organ before their outgrowth is termed metastatic latency. We will examine here the current knowledge of the mechanisms allowing metastatic latency and discuss the crucial role of the DTCs' tissue microenvironment in this process.


Assuntos
Metástase Neoplásica/patologia , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Animais , Progressão da Doença , Humanos
11.
Development ; 143(10): 1674-87, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26989177

RESUMO

The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Homeostase , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Pele/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dasatinibe/farmacologia , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Neoplasias de Células Escamosas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Cicatrização/efeitos dos fármacos , Proteínas de Sinalização YAP , Quinases da Família src/metabolismo
12.
Nature ; 481(7379): 85-9, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22158103

RESUMO

Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.


Assuntos
Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco/fisiologia , Animais , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Células Estromais/metabolismo , Via de Sinalização Wnt
14.
Nature ; 452(7187): 650-3, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18385740

RESUMO

Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Neoplasias Cutâneas/patologia , beta Catenina/metabolismo , Animais , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Epiderme/patologia , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias
15.
Dev Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38866011

RESUMO

A key step for metastatic outgrowth involves the generation of a deeply altered microenvironment (niche) that supports the malignant behavior of cancer cells. The complexity of the metastatic niche has posed a significant challenge in elucidating the underlying programs driving its origin. Here, by focusing on early stages of breast cancer metastasis to the lung in mice, we describe a cancer-dependent chromatin remodeling and activation of developmental programs in alveolar type 2 (AT2) cells within the niche. We show that metastatic cells can prime AT2 cells into a reprogrammed multilineage state. In turn, this cancer-induced reprogramming of AT2 cells promoted stem-like features in cancer cells and enhanced their initiation capacity. In conclusion, we propose the concept of "reflected stemness" as an early phenomenon during metastatic niche initiation, wherein metastatic cells reprogram the local tissue into a stem-like state that enhances intrinsic cancer-initiating potential, creating a positive feedback loop where tumorigenic programs are amplified.

16.
Cold Spring Harb Perspect Med ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36987584

RESUMO

Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Encéfalo/patologia , Fígado/patologia , Osso e Ossos/patologia , Metástase Neoplásica/patologia , Microambiente Tumoral
17.
Nat Cancer ; 4(3): 344-364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732635

RESUMO

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Assuntos
Lisina Acetiltransferases , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Acetilação , Acetilcoenzima A/metabolismo , Palmitatos , Lisina Acetiltransferases/metabolismo
18.
Nat Rev Immunol ; 22(3): 173-187, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34230649

RESUMO

Neutrophils are the most abundant myeloid cells in human blood and are emerging as important regulators of cancer. However, their functional importance has often been overlooked on the basis that they are short-lived, terminally differentiated and non-proliferative. Recent studies of their prominent roles in cancer have led to a paradigm shift in our appreciation of neutrophil functional diversity. This Review describes how neutrophil diversification, which in some contexts can lead to opposing functions, is generated within the tumour microenvironment as well as systemically. We compare neutrophil heterogeneity in cancer and in other pathophysiological contexts to provide an updated overview of our current knowledge of the functions of neutrophils in cancer.


Assuntos
Neoplasias , Neutrófilos , Diferenciação Celular , Humanos , Células Mieloides , Neoplasias/patologia , Microambiente Tumoral
19.
Trends Cell Biol ; 32(12): 979-987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35589467

RESUMO

A fundamental requirement for cancer initiation is the activation of developmental programmes by mutant cells. Oncogenic signals often confer an undifferentiated, stem cell-like phenotype that supports the long-term proliferative potential of cancer cells. Although cancer is a genetically driven disease, mutations in cancer-driver genes alone are insufficient for tumour formation, and the proliferation of cells harbouring oncogenic mutations depends on their microenvironment. In this Opinion article we discuss how the reprogrammed status of cancer cells not only represents the essence of their tumorigenicity but triggers 'reflected stemness' in their surrounding normal counterparts. We propose that this reciprocal interaction underpins the establishment of the tumour microenvironment (TME).


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco/patologia , Fenótipo , Células-Tronco Neoplásicas
20.
Cancer Lett ; 544: 215800, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35803476

RESUMO

Cancer cells thrive when embedded in a fine-tuned cellular and extracellular environment or tumour microenvironment (TME). There is a general understanding of a co-evolution between cancer cells and their surrounding TME, pointing at a functional connection between cancer cells characteristics and the perturbations induced in their surrounding tissue. However, it has never been formally proven whether this functional connection needs to be set from the start or if aggressive cancer cells always dominate their microenvironmental any point in time. This would require a dedicated experimental setting where malignant cells are challenged to grow in a different TME from the one they would naturally create. Here we generated an experimental setting where we transiently perturb the secretory profile of aggressive breast cancer cells without affecting their intrinsic growth ability, which led to the initial establishment of an atypical TME. Interestingly, even if initially tumours are formed, this atypical TME evolves to impair long term in vivo cancer growth. Using a combination of in vivo transcriptomics, protein arrays and in vitro co-cultures, we found that the atypical TME culminates in the infiltration of macrophages with STAT1high activity. These macrophages show strong anti-tumoural functions which reduce long-term tumour growth, despite lacking canonical M1 markers. Importantly, gene signatures of the mesenchymal compartment of the TME, as well as the anti-tumoural macrophages, show striking prognostic power that correlates with less aggressive human breast cancers.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Macrófagos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA