RESUMO
BACKGROUND: The safest ranges of oxygen saturation in preterm infants have been the subject of debate. METHODS: In two trials, conducted in Australia and the United Kingdom, infants born before 28 weeks' gestation were randomly assigned to either a lower (85 to 89%) or a higher (91 to 95%) oxygen-saturation range. During enrollment, the oximeters were revised to correct a calibration-algorithm artifact. The primary outcome was death or disability at a corrected gestational age of 2 years; this outcome was evaluated among infants whose oxygen saturation was measured with any study oximeter in the Australian trial and those whose oxygen saturation was measured with a revised oximeter in the U.K. trial. RESULTS: After 1135 infants in Australia and 973 infants in the United Kingdom had been enrolled in the trial, an interim analysis showed increased mortality at a corrected gestational age of 36 weeks, and enrollment was stopped. Death or disability in the Australian trial (with all oximeters included) occurred in 247 of 549 infants (45.0%) in the lower-target group versus 217 of 545 infants (39.8%) in the higher-target group (adjusted relative risk, 1.12; 95% confidence interval [CI], 0.98 to 1.27; P=0.10); death or disability in the U.K. trial (with only revised oximeters included) occurred in 185 of 366 infants (50.5%) in the lower-target group versus 164 of 357 infants (45.9%) in the higher-target group (adjusted relative risk, 1.10; 95% CI, 0.97 to 1.24; P=0.15). In post hoc combined, unadjusted analyses that included all oximeters, death or disability occurred in 492 of 1022 infants (48.1%) in the lower-target group versus 437 of 1013 infants (43.1%) in the higher-target group (relative risk, 1.11; 95% CI, 1.01 to 1.23; P=0.02), and death occurred in 222 of 1045 infants (21.2%) in the lower-target group versus 185 of 1045 infants (17.7%) in the higher-target group (relative risk, 1.20; 95% CI, 1.01 to 1.43; P=0.04). In the group in which revised oximeters were used, death or disability occurred in 287 of 580 infants (49.5%) in the lower-target group versus 248 of 563 infants (44.0%) in the higher-target group (relative risk, 1.12; 95% CI, 0.99 to 1.27; P=0.07), and death occurred in 144 of 587 infants (24.5%) versus 99 of 586 infants (16.9%) (relative risk, 1.45; 95% CI, 1.16 to 1.82; P=0.001). CONCLUSIONS: Use of an oxygen-saturation target range of 85 to 89% versus 91 to 95% resulted in nonsignificantly higher rates of death or disability at 2 years in each trial but in significantly increased risks of this combined outcome and of death alone in post hoc combined analyses. (Funded by the Australian National Health and Medical Research Council and others; BOOST-II Current Controlled Trials number, ISRCTN00842661, and Australian New Zealand Clinical Trials Registry number, ACTRN12605000055606.).
Assuntos
Deficiências do Desenvolvimento/epidemiologia , Mortalidade Infantil , Lactente Extremamente Prematuro/sangue , Oxigenoterapia/métodos , Oxigênio/sangue , Austrália , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Oximetria , Oxigenoterapia/efeitos adversos , Risco , Reino UnidoRESUMO
An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (lncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including lncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific lncRNA genes. These deletions define a distant cis-regulatory region that harbors, besides lncRNA genes, also a differentially methylated CpG island, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. We suggest that lung-transcribed 16q24.1 lncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of lncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development.
Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Síndrome da Persistência do Padrão de Circulação Fetal/genética , RNA Longo não Codificante/genética , Cromatina/metabolismo , Cromossomos Humanos Par 16/genética , Ilhas de CpG , Elementos Facilitadores Genéticos , Evolução Fatal , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Impressão Genômica , Células HEK293 , Humanos , Recém-Nascido , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/diagnóstico , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Deleção de Sequência , Transcrição Gênica , Proteína Gli2 com Dedos de ZincoRESUMO
BACKGROUND: The optimal strategy for weaning very preterm infants from nasal continuous positive airway pressure (NCPAP) is unclear. Reported strategies include weaning NCPAP to a predefined pressure then trialling stopping completely (abrupt wean); alternate periods of increased time off NCPAP whilst reducing time on until the infant is completely weaned (gradual wean); and using high flow nasal cannula (HFNC) to assist the weaning process. The aim of this study was to determine the optimal weaning from NCPAP strategy for very preterm infants. METHODS: A pilot single centre, factorial design, 4-arm randomised controlled trial. Sixty infants born <30 weeks gestation meeting stability criteria on NCPAP were randomly allocated to one of four groups. Group 1: abrupt wean with HFNC; Group 2: abrupt wean without HFNC; Group 3: gradual wean with HFNC; Group 4: gradual wean without HFNC. The primary outcomes were duration of respiratory support, chronic lung disease, length of hospital stay and time to full suck feeds. RESULTS: The primary outcome measures were not significantly different between groups. Group 1 had a significant reduction in duration of NCPAP (group 1: median 1 day; group 2: 24 days; group 3: 15 days; group 4: 24 days; p = 0.002) and earlier corrected gestational age off NCPAP. There was a significant difference in rate of parental withdrawal from the study, with group 2 having the highest rate. Group 3 had a significantly increased duration on HFNC compared to group 1. CONCLUSIONS: Use of high flow nasal cannula may be effective at weaning infants from NCPAP but did not reduce duration of respiratory support or time to full suck feeds. Abrupt wean without the use of HFNC was associated with an increased rate of withdrawal by parent request. TRIAL REGISTRATION: This study is registered at the Australian New Zealand Clinical Trials Registry ( www.anzctr.org.au/). (Registration Number = ACTRN12610001003066).
Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Recém-Nascido Prematuro , Desmame do Respirador/métodos , Comportamento Alimentar , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Tempo de Internação , Masculino , Projetos Piloto , Fatores de TempoRESUMO
High frequency oscillatory ventilation (HFOV) is becoming an increasingly popular intervention in the neonatal intensive care unit. This article will attempt to explain the principles of HFOV. It is inherently more difficult to become skilled in this technique than in other forms of mechanical ventilation, so caution is warranted.
Assuntos
Ventilação de Alta Frequência/métodos , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Feminino , Ventilação de Alta Frequência/efeitos adversos , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Prognóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/mortalidade , Medição de Risco , Índice de Gravidade de Doença , Análise de Sobrevida , Fatores de Tempo , Resultado do TratamentoRESUMO
A resumption of, and escalation in, breathing efforts (hyperpnoea) reflexively accelerates heart rate (HR) and may facilitate cardiac and circulatory recovery from apnoea. We analysed whether this mechanism can produce a sustained rise in HR (tachycardia) when a sleeping infant is confronted by mild, rapidly worsening asphyxia, simulating apnoea. Twenty-seven healthy term-born infants aged 1-8 days rebreathed the expired gas for 90 s during quiet sleep to stimulate breathing and heart rate. To discriminate cardio-excitatory effects of central respiratory drive, lung inflation, hypoxia, hypercapnia and asphyxia, we varied the inspired O(2) level and compared temporal changes in response profiles as respiratory sensitivity to hypoxia and asphyxia 'reset' after birth. We demonstrate that asphyxia-induced hyperpnoea and tachycardia strengthen dramatically over the first week with different time courses and via separate mechanisms. Cardiac excitation by hypercapnia improves first, followed by a slower improvement in respiratory hypoxic drive. A rise in CO(2) consequently elicits stronger, longer lasting tachycardia than moderate increases in respiratory drive or lung expansion. We suggest that without a strong facilitating action of CO(2) on the immature heart, respiratory manoeuvres may be unable to reflexively counteract strong vagal bradycardia. This may increase the vulnerability of some infants to apnoea-asphyxia.
Assuntos
Asfixia/fisiopatologia , Dióxido de Carbono/fisiologia , Frequência Cardíaca , Humanos , Recém-Nascido , RespiraçãoRESUMO
Positive pressure ventilation (PPV) is a frequent intervention in the neonatal intensive care unit. This article is directed towards paediatricians in training and attempts to cover the basics of PPV without being too technical. To do so we have employed an extensive use of graphics to illustrate the underlying principles.
Assuntos
Ventilação com Pressão Positiva Intermitente/métodos , Humanos , Recém-Nascido , Doenças do Recém-Nascido/terapia , Unidades de Terapia Intensiva Neonatal , Valores de Referência , RespiraçãoRESUMO
We investigated the role played by beta2-containing neuronal nicotinic receptors [nicotinic acetylcholine receptors (nAChRs)] in mediating nicotine's side effects in the fetus and newborn. Pregnant WT and mutant mice lacking the beta2 nAChR subunit were implanted with osmotic minipumps that delivered either water or a controlled dose of nicotine. Subsequently, we compared the development of the sympathoadrenal system and breathing and arousal reflexes of offspring shortly after birth, a period of increased vulnerability to nicotine exposure. Newborn WT pups exposed to nicotine exhibited all of the deficits associated with maternal tobacco and nicotine use, and linked to poor neonatal outcome: growth restriction, unstable breathing, and impaired arousal and catecholamine biosynthesis. Remarkably similar deficits were detected in pups lacking beta2-containing nAChRs. Loss-of-function of these nAChRs consequently reproduces with astonishing fidelity many of the abnormalities caused by perinatal nicotine exposure. We propose that the underlying mechanisms of nicotine's detrimental side effects on a range of crucial defensive reflexes involve loss of function of nAChR subtypes, possibly via activity-dependent desensitization.