RESUMO
BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.
Assuntos
Insetos , Animais , Insetos/genética , Análise de Sequência de DNA , ChileRESUMO
The discovery and characterization of plant species adapted to extreme environmental conditions have become increasingly important. Hoffmannseggia doellii is a perennial herb endemic to the Chilean Atacama Desert that grows in the western Andes between 2800 and 3600 m above sea level. Its growing habitat is characterized by high radiation and low water and nutrient availability. Under these conditions, H. doellii can grow, reproduce, and develop an edible tuberous root. We characterized the H. doellii soil-associated microbiomes to understand the biotic factors that could influence their surprising ability to survive. We found an increased number of observed species and higher phylogenetic diversity of bacteria and fungi on H. doellii root soils compared with bare soil (BS) along different sites and to soil microbiomes of other plant species. Also, the H. doellii-associated microbiome had a higher incidence of overall positive interactions and fungal within-kingdom interactions than their corresponding BS network. These findings suggest a microbial diversity soil modulation mechanism that may be a characteristic of highly tolerant plants to diverse and extreme environments. Furthermore, since H. doellii is related to important cultivated crops, our results create an opportunity for future studies on climate change adaptation of crop plants.
Assuntos
Microbiota , Microbiologia do Solo , Clima Desértico , Filogenia , Plantas , SoloRESUMO
Fludioxonil is a highly effective phenylpyrrole fungicide for controlling Botrytis cinerea. Although the field efficacy of fludioxonil remains high, Botrytis cinerea isolates with reduced sensitivity have been reported globally. The molecular target of fludioxonil still remains unknown; however, a mechanism of reduced sensitivity to fludioxonil underlies the overexpression of the ATP binding cassette (ABC) transporter AtrB in a dependent pathway of the Mrr1 transcription factor. Fludioxonil is a key player in controlling B. cinerea infection in table grapes in Chile. However, some isolates with a reduced sensitivity to fludioxonil were detected. This study observed endogenous atrB overexpression in Chilean isolates with reduced sensitivity to fludioxonil (n = 22) compared to the sensitive isolates (n = 10). All isolates increased the expression of atrB in a growth medium supplemented with fludioxonil (0.05 µg/mL). However, sensitive isolates showed lower atrB expression than those with reduced fludioxonil sensitivity. Remarkably, a mutant version of the transcription factor Mrr1 carrying 21 amino acid modifications was identified in all isolates with reduced sensitivity to fludioxonil. These changes alter the protein's transcription factor domain and the C-terminal portion of the protein but not the Zn (2)-C6 fungal-type DNA-binding domain. These results suggest a direct relationship between the conserved and divergent mutant version of mrr1 and sensitivity to fludioxonil. This study provides a new target for developing molecular diagnostic strategies to monitor B. cinerea's sensitivity to fludioxonil in the field.
RESUMO
Antimicrobial resistance is a major global health problem, and, among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) represents a serious threat. MRSA causes a wide range of infections, including bacteremia, which, due to the limited use of ß-lactams, is difficult to treat. This study aimed to analyze 51 MRSA isolates collected in 2018 from samples of patients with bacteremia from two hospitals of the Metropolitan Health Service of Santiago, Chile, both in their resistance profile and in the identification of virulence factors. In addition, genomic characterization was carried out by the WGS of an isolate that was shown to be the one of greatest concern (N°. 42) due to its intermediate resistance to vancomycin, multiple virulence factors and being classified as ST8 PVL-positive. In our study, most of the isolates turned out to be multidrug-resistant, but there are still therapeutic options, such as tetracycline, rifampicin, chloramphenicol and vancomycin, which are currently used for MRSA infections; however, 18% were PVL positive, which suggests greater virulence of these isolates. It was determined that isolate N°42 is grouped within the USA300-LV strains (ST8, PVL+, COMER+); however, it has been suggested that, in Chile, a complete displacement of the PVL-negative ST5 clone has not occurred.
RESUMO
BACKGROUND: Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400-4500 m a.s.l.) of the Talabre-Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. RESULTS: Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. CONCLUSIONS: In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.
RESUMO
The presence of microplastics in oceans and coastlines has increased during recent years due anthropogenic activities and represents a serious environmental problem. The establishment and assembly of microbial communities in these microplastics, specifically located near aquaculture activities, is not well understood. In this study, we analyzed unique and core members of bacterial communities attached to microplastics collected from three coastal environments of the South Pacific, which represent low, medium and high anthropogenic activity derived from the aquaculture industry. Microplastics were analyzed with Fourier-transform infrared spectroscopy, scanning electron microscopy, and next-generation sequencing to assess the prevailing microplastics types, and to characterize microbial communities attached to them. We identified four main types of microplastics (polypropylene, polyethylene, nylon and polystyrene) and 3102 Operational Taxonomic Units (OTUs) at the sampled sites, which were dominated by the phylum Cyanobacteria, Bacteroidetes and Proteobacteria (mainly Alpha and Gammaproteobacteria). Similarity index analysis showed that bacterial communities in microplastics differed from those found in the surrounding seawaters, and also that they varied among locations, suggesting a role of the environment and level of anthropogenic activities on the plastisphere taxa. Despite this difference, 222 bacterial OTUs were shared among the three sites representing between 34 and 51% of OTUs of each sampled site, and thus constituted a core microbiome of microplastics. Comparison of the core microbiome with bacterial communities of the surrounding seawater suggested that the plastisphere constituted a selective habitat for diverse microbial communities. Computational predictions also provided evidence of significantly enriched functions in the core microbiome. Co-occurrence networks revealed that putative ecological interactions among microplastics OTUs was dominated by positive correlations. To the best of our knowledge, this is the first study that evaluated the composition of microbial communities found in microplastics from the Patagonia region of the Southern Pacific Ocean.
Assuntos
Microbiota , Microplásticos , Bactérias/genética , Chile , Plásticos , Água do Mar/microbiologiaRESUMO
A genotyping by sequencing (GBS) approach was used to analyze the organization of genetic diversity in V. pubescens and V. chilensis. GBS identified 4675 and 4451 SNPs/INDELs in two papaya species. The cultivated orchards of V. pubescens exhibited scarce genetic diversity and low but significant genetic differentiation. The neutrality test yielded a negative and significant result, suggesting that V. pubescens suffered a selective sweep or a rapid expansion after a bottleneck during domestication. In contrast, V. chilensis exhibited a high level of genetic diversity. The genetic differentiation among the populations was slight, but it was possible to distinguish the two genetic groups. The neutrality test indicated no evidence that natural selection and genetic drift affect the natural population of V. chilensis. Using the Carica papaya genome as a reference, we identified critical SNPs/INDELs associated with putative genes. Most of the identified genes are related to stress responses (salt and nematode) and vegetative and reproductive development. These results will be helpful for future breeding and conservation programs of the Caricaceae family.
RESUMO
BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.