Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(12): 5376-5382, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819900

RESUMO

Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules. Here we report the discovery of lamellar and hexagonal periodic arrays on the surface of vesicles generated from sequence-defined bicomponent monodisperse oligomers containing lipid and glycolipid mimics. These vesicles, known as glycodendrimersomes, act as cell-membrane mimics with hierarchical morphologies resembling bicomponent rafts. These nanosegregated morphologies diminish sugar-sugar interactions enabling stronger binding to sugar-binding proteins than densely packed arrangements of sugars. Importantly, this provides a mechanism to encode the reactivity of sugars via their interaction with sugar-binding proteins. The observed sugar phase-separated hierarchical arrays with lamellar and hexagonal morphologies that encode biological recognition are among the most complex architectures yet discovered in soft matter. The enhanced reactivity of the sugar displays likely has applications in material science and nanomedicine, with potential to evolve into related technologies.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Biomimética/métodos , Dendrímeros/química , Glicolipídeos/química , Lipídeos/química , Nanomedicina/métodos , Açúcares/química , Tensoativos/química
2.
Prep Biochem Biotechnol ; 50(5): 494-503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31900037

RESUMO

Invertase from Saccharomyces cerevisiae was entrapped in Ca-alginate and Ca-alginate-kappa-carrageenan matrix. Optimum pH for the free and immobilized invertase was found to be 4.5 and 5.5, respectively. The optimum hydrolysis temperature was 55 °C for both the free and immobilized forms. Km values for free invertase and invertase entrapped in Ca-alginate and Ca-alginate-kappa-carrageenan beads were 15, 21, and 19 mM, respectively. Values of Vmax for free invertase and invertase entrapped in Ca-alginate and Ca-alginate-kappa-carrageenan beads were 238, 186, and 197 mM min-1, respectively. Invertase entrapped in Ca-alginate-kappa-carrageenan matrix had the highest pH and thermal stability, higher reusability with 71% retention in activity after nine batches of reuse and higher storage stability with 86% activity retention after 12 weeks at 4 °C, pH 4.5. Fermentation of cane molasses by yeast for bioethanol formation in the presence of free invertase at 30 °C, pH 5.0, led to an increase in ethanol production by 3%. However, the production increased by 9% when invertase entrapped in Ca-alginate-kappa-carrageenan was used as a catalyst.HighlightsInvertase from Saccharomyces cerevisiae was entrapped in Ca-alginate beads.For efficient encapsulation of invertase, kappa-carrageenan was used in combination with alginate as a matrix.Entrapment in Ca-alginate-kappa-carrageenan increased pH and thermal stability of invertase.Invertase entrapped in Ca-alginate-kappa-carrageenan was used for bioethanol production from cane molasses.


Assuntos
Alginatos/química , Carragenina/química , Enzimas Imobilizadas/química , Etanol/síntese química , Proteínas Fúngicas/química , beta-Frutofuranosidase/química , Biocombustíveis , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Saccharomyces cerevisiae/enzimologia , Temperatura
3.
Appl Biochem Biotechnol ; 191(2): 838-851, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31907781

RESUMO

Invertase was immobilized on chitosan using glutaraldehyde or tris(hydroxymethyl)phosphine as cross-linker. The optimum pH for free and immobilized enzyme was found to be 4.5 and 5.5, respectively. The optimum hydrolysis temperature was 55 °C for both the free and immobilized forms. Km and Vmax values for free invertase, and invertase immobilized on glutaraldehyde- and THP-activated chitosan were 15, 19, and 20 mM, respectively, and 238, 204, and 212 mM min-1, respectively. The THP-immobilized enzyme had the highest pH and thermal stability, higher reusability with 70% retention in activity after 9 batches of reuse and higher storage stability with 90% retention in activity after 12 weeks at 4 °C, pH 4.5. Fermentation of cane molasses by yeast to form ethanol in the presence of free invertase at 30°C, pH 5.0 led to an increase in ethanol production by 3% and the production increased by 10.7% when immobilized invertase was used as catalyst. Graphical Abstract.


Assuntos
Quitosana/química , Enzimas Imobilizadas/metabolismo , Glutaral/química , Fosfinas/química , beta-Frutofuranosidase/metabolismo , Animais , Estabilidade Enzimática , Etanol , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Melaço , Saccharomyces cerevisiae , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA