Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(9): 302, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115581

RESUMO

Understanding the resident microbial communities and their above and below ground interactions with plants will provide necessary information for crop disease protection and stress management. In this study, we show how diversity of core microbiome varies with disease susceptibility of a crop. To test this hypothesis, we have focused on identifying the core microbial species of cotton leaf curl disease (CLCuD) susceptible Gossypium hirsutum and CLCuD resistant Gossypium arboreum under viral infestation. Derivation of core membership is challenging as it depends on an occupancy threshold of microbial species in a sampling pool, whilst accounting for different plant compartments. We have used an abundance-occupancy distribution approach where we dynamically assess the threshold for core membership, whilst marginalizing for occupancy in four compartments of the cotton plant, namely, leaf epiphyte, leaf endophyte, rhizosphere, and root endophyte. Additionally, we also fit a neutral model to the returned core species to split them into three groups, those that are neutral, those that are selected by the plant environment, and finally those that are dispersal limited. We have found strong inverse relationship between diversity of core microbiome and disease susceptibility with the resistant variety, G. arboreum, possessing higher diversity of microbiota. A deeper understanding of this association will aid in the development of biocontrol agents for improving plant immunity against biotrophic pathogens.


Assuntos
Resistência à Doença , Gossypium , Microbiota , Doenças das Plantas , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia , Biodiversidade , Rizosfera , Microbiologia do Solo
2.
Front Microbiol ; 15: 1381883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952448

RESUMO

Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can alter root-associated and leaf-associated microbial diversities in plants. There are complex ecological dynamics at play, with each microbe contributing to a multitude of biotic and abiotic interactions, thus deciding the stability of the plant's ecosystem in response to the disease. Deciphering these networks of interactions is a challenging task. The inferential research in microbiome is also at a nascent stage, often constrained by the underlying analytical assumptions and the limitations with respect to the depth of sequencing. There is also no real consensus on network-wide statistics to identify the influential microbial players in a network. Guided by the latest developments in network science, including recently published metrics such as Integrated View of Influence (IVI) and some other centrality measures, this study provides an exposé of the most influential nodes in the rhizospheric and phyllospheric microbial networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, and resistant cotton varieties. It is evident from our results that the CLCuD-resistant Gossypium arboreum possesses an equal share of keystone species, which helps it to withstand ecological pressures. In the resistant variety, the phyllosphere harbors the most influential nodes, whereas in the susceptible variety, they are present in the rhizosphere. Based on hubness score, spreading score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, Candidatus woesebacteria, and Dyella were identified as the most influential nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54. This concept deciphers the diseased and healthy plant's response to viral disease, which may be microbially mediated.

3.
PLoS One ; 19(6): e0304462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900773

RESUMO

BACKGROUND: Zinc deficiency poses significant health risks, particularly in low-income settings. This study aims to evaluate the impact of agronomically zinc biofortified (fermented and non-fermented) and post-harvest wheat flour flatbread on zinc status and metabolic health in adolescents and adult women in rural Pakistan. METHODS: A four-arm triple-blind randomized controlled trial will be conducted in a rural district of Pakistan. Participants (adolescents aged 10-19 and adult women aged 20-40) will be assigned to receive fermented or unfermented high zinc agronomically biofortified wheat flour flatbread, post-harvest zinc-fortified wheat flour flatbread, or low zinc conventional whole wheat flour flatbread. The meal would be served once a day, six days a week for six months. The study aims to enroll 1000 participants and will be analyzed based on the intention-to-treat principle. The trial is registered with number NCT06092515. OUTCOMES: Primary outcomes will include serum zinc concentration and metabolic markers, while secondary outcomes include anthropometric measurements, blood pressure, and dietary intake. CONCLUSION: This trial will provide valuable insights into the efficacy of agronomically zinc biofortified wheat flour in improving zinc status and metabolic health. Findings may inform public health strategies to combat zinc deficiency in resource-limited settings.


Assuntos
Farinha , Alimentos Fortificados , Triticum , Zinco , Humanos , Zinco/deficiência , Zinco/análise , Farinha/análise , Feminino , Alimentos Fortificados/análise , Adolescente , Triticum/química , Adulto , Criança , Adulto Jovem , Paquistão , Fermentação , Masculino
4.
NPJ Biofilms Microbiomes ; 9(1): 100, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097579

RESUMO

The failure of breeding strategies has caused scientists to shift to other means where the new approach involves exploring the microbiome to modulate plant defense mechanisms against Cotton Leaf Curl Disease (CLCuD). The cotton microbiome of CLCuD-resistant varieties may harbor a multitude of bacterial genera that significantly contribute to disease resistance and provide information on metabolic pathways that differ between the susceptible and resistant varieties. The current study explores the microbiome of CLCuD-susceptible Gossypium hirsutum and CLCuD-resistant Gossypium arboreum using 16 S rRNA gene amplification for the leaf endophyte, leaf epiphyte, rhizosphere, and root endophyte of the two cotton species. This revealed that Pseudomonas inhabited the rhizosphere while Bacillus was predominantly found in the phyllosphere of CLCuV-resistant G. arboreum. Using salicylic acid-producing Serratia spp. and Fictibacillus spp. isolated from CLCuD-resistant G. arboreum, and guided by our analyses, we have successfully suppressed CLCuD in the susceptible G. hirsutum through pot assays. The applied strains exhibited less than 10% CLCuD incidence as compared to control group where it was 40% at 40 days post viral inoculation. Through detailed analytics, we have successfully demonstrated that the applied microbes serve as a biocontrol agent to suppress viral disease in Cotton.


Assuntos
Begomovirus , Microbiota , Gossypium/genética , Consórcios Microbianos , Doenças das Plantas , Begomovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA