RESUMO
During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.
Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/química , Movimento Celular , Receptor DCC/deficiência , Receptor DCC/genética , Proteínas Ligadas por GPI/química , Cones de Crescimento/fisiologia , Humanos , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Neurônios/citologia , Neurônios/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Assuntos
COVID-19 , Estado Terminal , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Técnicas de Genotipagem , Monócitos/metabolismo , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Transcriptoma , Sequenciamento Completo do GenomaRESUMO
Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.
Assuntos
Benzodiazepinas , Receptores de GABA-A , Transdução de Sinais , Benzodiazepinas/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Histamina/metabolismo , Humanos , Ligantes , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA-Seq , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Análise de Célula Única , Ácido gama-Aminobutírico/metabolismoRESUMO
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
Assuntos
COVID-19 , Estado Terminal , Genoma Humano , Interações Hospedeiro-Patógeno , Sequenciamento Completo do Genoma , Transportadores de Cassetes de Ligação de ATP , COVID-19/genética , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Moléculas de Adesão Celular , Cuidados Críticos , Estado Terminal/mortalidade , Selectina E , Fator VIII , Fucosiltransferases , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Humanos , Subunidade beta de Receptor de Interleucina-10 , Lectinas Tipo C , Mucina-1 , Proteínas do Tecido Nervoso , Proteínas de Transferência de Fosfolipídeos , Receptores de Superfície Celular , Proteínas Repressoras , SARS-CoV-2/patogenicidade , Galactosídeo 2-alfa-L-FucosiltransferaseRESUMO
A relatively small number of proteins have been suggested to act as morphogens-signalling molecules that spread within tissues to organize tissue repair and the specification of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1-3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specific chaperone, have been proposed to overcome this so-called Wnt solubility problem4-6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defined by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors.
Assuntos
Glipicanas/química , Glipicanas/metabolismo , Lipídeos , Transdução de Sinais , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Glipicanas/classificação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Masculino , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Domínios Proteicos , Transporte Proteico , Solubilidade , Proteína Wnt1/química , Proteína Wnt1/metabolismoRESUMO
The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.
Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Receptores de GABA-A/química , Receptores de GABA-A/ultraestrutura , Imagem Individual de Molécula/métodos , Animais , Microscopia Crioeletrônica/normas , Descoberta de Drogas , Humanos , Camundongos , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/ultraestrutura , Imagem Individual de Molécula/normasRESUMO
Type A γ-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system1,2. Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia3,4. Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the α1ß2/3γ2 GABAA receptors5. The ß3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in ß1-ß3 triple knockout neurons6. So far, efforts to generate accurate structural models for heteromeric GABAA receptors have been hampered by the use of engineered receptors and the presence of detergents7-9. Notably, some recent cryo-electron microscopy reconstructions have reported 'collapsed' conformations8,9; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor10,11, the large body of structural work on homologous homopentameric receptor variants12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human α1ß3γ2L-a major synaptic GABAA receptor isoform-that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator 'megabody' and is in a desensitized conformation. Each GABAA receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of α1 subunits. Beyond this level, the intracellular M3-M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABAA receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology.
Assuntos
Microscopia Crioeletrônica , Bicamadas Lipídicas/química , Receptores de GABA-A/química , Receptores de GABA-A/ultraestrutura , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Condutividade Elétrica , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Estrutura Quaternária de Proteína , Receptores de GABA-A/metabolismoRESUMO
In Fig. 5b, d, the arrows showing transmembrane domain rotations were inadvertently pointing clockwise instead of anticlockwise. Similarly, 'anticlockwise' should have been 'clockwise' in the sentence 'This conformational change of the ECD triggers a clockwise rotation of the TMD.' In Extended Data Table 1, the units of the column 'Model resolution' should have been Å instead of Å2. These errors have been corrected online.
RESUMO
Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.
Assuntos
Alprazolam/química , Bicuculina/química , Microscopia Crioeletrônica , Diazepam/química , Picrotoxina/química , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Alprazolam/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Bicuculina/farmacologia , Ligação Competitiva/efeitos dos fármacos , Diazepam/farmacologia , Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Humanos , Ligantes , Modelos Moleculares , Nanoestruturas/química , Picrotoxina/farmacologiaRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1010118.].
RESUMO
Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.
Assuntos
Autoanticorpos/sangue , Imunoglobulina G/imunologia , Protrombina/imunologia , SARS-CoV-2/imunologia , COVID-19/complicações , COVID-19/imunologia , Comunicação Celular/imunologia , Humanos , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.
Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo , Proteína da Hemocromatose/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/ultraestrutura , Moléculas de Adesão Celular Neuronais/ultraestrutura , Cristalografia por Raios X , Proteínas Ligadas por GPI/ultraestrutura , Fator 5 de Diferenciação de Crescimento/ultraestrutura , Proteína da Hemocromatose/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas do Tecido Nervoso/ultraestrutura , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de SinaisRESUMO
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Assuntos
COVID-19/genética , Conformação Proteica , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células VeroRESUMO
Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.
Assuntos
Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animais , Colesterol/química , Regulação da Expressão Gênica , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Receptor Patched-1/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio ÚnicoRESUMO
The calcium-sensing receptor (CaSR) is a homodimeric G-protein-coupled receptor that signals via intracellular calcium (Ca2+i) mobilisation and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) to regulate extracellular calcium (Ca2+e) homeostasis. The central importance of the CaSR in Ca2+e homeostasis has been demonstrated by the identification of loss- or gain-of-function CaSR mutations that lead to familial hypocalciuric hypercalcaemia (FHH) or autosomal dominant hypocalcaemia (ADH), respectively. However, the mechanisms determining whether the CaSR signals via Ca2+i or ERK have not been established, and we hypothesised that some CaSR residues, which are the site of both loss- and gain-of-function mutations, may act as molecular switches to direct signalling through these pathways. An analysis of CaSR mutations identified in >300 hypercalcaemic and hypocalcaemic probands revealed five 'disease-switch' residues (Gln27, Asn178, Ser657, Ser820 and Thr828) that are affected by FHH and ADH mutations. Functional expression studies using HEK293 cells showed disease-switch residue mutations to commonly display signalling bias. For example, two FHH-associated mutations (p.Asn178Asp and p.Ser820Ala) impaired Ca2+i signalling without altering ERK phosphorylation. In contrast, an ADH-associated p.Ser657Cys mutation uncoupled signalling by leading to increased Ca2+i mobilization while decreasing ERK phosphorylation. Structural analysis of these five CaSR disease-switch residues together with four reported disease-switch residues revealed these residues to be located at conformationally active regions of the CaSR such as the extracellular dimer interface and transmembrane domain. Thus, our findings indicate that disease-switch residues are located at sites critical for CaSR activation and play a role in mediating signalling bias.
Assuntos
Mutação com Ganho de Função , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Mutação com Perda de Função , Receptores de Detecção de Cálcio/genética , Transdução de Sinais , Sequência de Aminoácidos , Sinalização do Cálcio , Análise Mutacional de DNA , Células HEK293 , Humanos , Hipercalciúria/metabolismo , Hipocalcemia/metabolismo , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Conformação Proteica , Receptores de Detecção de Cálcio/metabolismo , Alinhamento de SequênciaRESUMO
Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.
Assuntos
Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Modelos Moleculares , Conformação Proteica , Proteoglicanas/metabolismo , Transdução de Sinais/fisiologia , Cromatografia de Afinidade , Escherichia coli , Glicosaminoglicanos/química , Humanos , Mutagênese Sítio-Dirigida , Polimerização , UltracentrifugaçãoRESUMO
The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria.
Assuntos
Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Eritrócitos/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Vacinas Antimaláricas/genética , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vaccinia virus/genética , Vaccinia virus/metabolismoRESUMO
Common Variable Immunodeficiency Disorders (CVIDs) are the most prevalent cause of primary antibody failure. CVIDs are highly variable and a genetic causes have been identified in <5% of patients. Here, we performed whole genome sequencing (WGS) of 34 CVID patients (94% sporadic) and combined them with transcriptomic profiling (RNA-sequencing of B cells) from three patients and three healthy controls. We identified variants in CVID disease genes TNFRSF13B, TNFRSF13C, LRBA and NLRP12 and enrichment of variants in known and novel disease pathways. The pathways identified include B-cell receptor signalling, non-homologous end-joining, regulation of apoptosis, T cell regulation and ICOS signalling. Our data confirm the polygenic nature of CVID and suggest individual-specific aetiologies in many cases. Together our data show that WGS in combination with RNA-sequencing allows for a better understanding of CVIDs and the identification of novel disease associated pathways.
Assuntos
Linfócitos B/metabolismo , Imunodeficiência de Variável Comum/genética , Genoma/genética , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Receptor do Fator Ativador de Células B/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Análise de Sequência de DNA , Análise de Sequência de RNA , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Adulto JovemRESUMO
Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application.