Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 236(1): 210-221, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35633108

RESUMO

Arbuscular mycorrhizal fungi (AMF) can help mitigate plant responses to water stress, but it is unclear whether AMF do so by indirect mechanisms, direct water transport to roots, or a combination of the two. Here, we investigated if and how the AMF Rhizophagus intraradices transported water to the host plant Avena barbata, wild oat. We used two-compartment microcosms, isotopically labeled water, and a fluorescent dye to directly track and quantify water transport by AMF across an air gap to host plants. Plants grown with AMF that had access to a physically separated compartment containing 18 O-labeled water transpired almost twice as much as plants with AMF excluded from that compartment. Using an isotopic mixing model, we estimated that water transported by AMF across the air gap accounted for 34.6% of the water transpired by host plants. In addition, a fluorescent dye indicated that hyphae were able to transport some water via an extracytoplasmic pathway. Our study provides direct evidence that AMF can act as extensions of the root system along the soil-plant-air continuum of water movement, with plant transpiration driving water flow along hyphae outside of the hyphal cell membrane.


Assuntos
Micorrizas , Corantes Fluorescentes/metabolismo , Fungos , Hifas/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Plantas/microbiologia
3.
Rapid Commun Mass Spectrom ; 30(15): 1743-53, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426450

RESUMO

RATIONALE: Information about the sulfur stable isotope composition (δ(34) S value) of organic materials and sediments, in addition to their nitrogen (δ(15) N value) and carbon (δ(13) C value) stable isotope compositions, can provide insights into mechanisms and processes in different areas of biological and geological research. The quantification of δ(34) S values has traditionally required an additional and often more difficult analytical procedure than NC dual analysis. Here, we report on the development of a high-throughput method that simultaneously measures the elemental and isotopic compositions of N, C and S in a single sample, and over a wide range of sample sizes and C/N and C/S ratios. METHODS: We tested a commercially available CHNOS elemental analyzer in line with an isotope ratio mass spectrometer for the simultaneous quantification of N, C and S stable isotope ratios and contents, and modified the elemental analyzer in order to overcome the interference of (18) O in δ(34) S values, to minimize any water condensation that could also influence S memory, and to achieve the complete reduction of nitrogen oxides to N2 gas for accurate measurement of δ(15) N values. A selection of organic materials and soils was analyzed with a ratio of 1:1.4 standards to unknowns per run. RESULTS: The modifications allowed high quality measurements for N, C and S isotope ratios simultaneously (1 SD of ±0.13‰ for δ(15) N value, ±0.12‰ for δ(13) C value, and ±0.4‰ for δ(34) S value), with high throughput (>75 unknowns per run) and over a wide range of element amount per capsule (25 to 500 µg N, 200-4000 µg C, and 8-120 µg S). CONCLUSIONS: This method is suitable for widespread use and can significantly enhance the application of δ(34) S measurements in a broad range of soils and organic samples in ecological and biogeochemical research. Copyright © 2016 John Wiley & Sons, Ltd.

4.
Oecologia ; 169(2): 307-17, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22108855

RESUMO

Partial mycoheterotrophy, a newly discovered form of mixotrophy in plants, has been described in at least two major lineages of angiosperms, the orchids and ericaceous plants in the tribe Pyroleae. Partial mycoheterotrophy entails carbon gains both directly from photosynthesis and via symbiotic mycorrhizal fungi, but determining the degree of plant dependence on fungal carbon is challenging. The purpose of this study was to determine if two chlorophyllous species of Pyroleae, Chimaphila umbellata and Pyrola picta, were receiving carbon via mycorrhizal networks and, if so, if their proportional dependency on fungal carbon gains increased under reduced light conditions. This was accomplished by a field experiment that manipulated light and plants' access to mycorrhizal networks, and by using the stable carbon isotope composition (δ(13)C) of leaf soluble sugars as a marker for the level of mycoheterotrophy. Based on leaf soluble sugars δ(13)C values, we calculated a site-independent isotope enrichment factor as a measure of fungal contributions to plant C. We found that, under each treatment and over time, the two test species demonstrated different isotopic responses caused by their different intrinsic physiologies. Our data, along with previously published studies, suggest that Chimaphila umbellata is primarily an autotrophic understory plant, while Pyrola picta may be capable of partial mycoheterotrophy. However, in this study, a 50% decrease in light availability did not significantly change the relative dependency of P. picta on carbon gains via mycoheterotrophy.


Assuntos
Carbono/metabolismo , Ericaceae/microbiologia , Ericaceae/fisiologia , California , Carboidratos/análise , Isótopos de Carbono , Processos Heterotróficos/fisiologia , Luz , Micorrizas/fisiologia , Nitrogênio/análise , Nitrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
5.
PLoS One ; 15(11): e0226318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33201878

RESUMO

The large-scale patterns of movement for the Sharp-shinned Hawk (Accipiter striatus), a small forest hawk found throughout western North America, are largely unknown. However, based on field observations we set out to test the hypothesis that juvenile migratory A. striatus caught along two distinct migration routes on opposite sides of the Sierra Nevada Mountains of North America (Pacific Coast and Intermountain Migratory Flyways) come from geographically different natal populations. We applied stable isotope analysis of hydrogen (H) and oxygen (O) of feathers, and large scale models of spatial isotopic variation (isoscapes) to formulate spatially explicit predictions of the origin of the migrant birds. Novel relationships were assessed between the measured hydrogen and oxygen isotope values of feathers from A. striatus museum specimens of known origin and the isoscape modeled hydrogen and oxygen isotope values of precipitation at those known locations. We used these relationships to predict the origin regions for birds migrating along the two flyways from the measured isotope values of migrant's feathers and the associated hydrogen and oxygen isotopic composition of precipitation where these feathers were formed. The birds from the two migration routes had overlap in their natal/breeding origins and did not differentiate into fully separate migratory populations, with birds from the Pacific Coast Migratory Flyway showing broader natal geographic origins than those from the Intermountain Flyway. The methodology based on oxygen isotopes had, in general, less predictive power than the one based on hydrogen. There was broad agreement between the two isotope approaches in the geographic assignment of the origins of birds migrating along the Pacific Coast Flyway, but not for those migrating along the Intermountain Migratory Flyway. These results are discussed in terms of their implications for conservation efforts of A. striatus in western North America, and the use of combined hydrogen and oxygen stable isotope analysis to track the movement of birds of prey on continental scales.


Assuntos
Migração Animal/fisiologia , Falcões/fisiologia , Hidrogênio/análise , Isótopos de Oxigênio/análise , Estações do Ano , Animais , Geografia , América do Norte , Dinâmica Populacional
6.
Ann Bot ; 90(5): 623-30, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12466103

RESUMO

To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)-[(3)H]ABA. The predominant pathway of ABA catabolism was via 8'-hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than basal kernels, while both returned to control levels after rewatering. ABA catabolism activity per gram fresh weight increased about three-fold in response to water stress, but was about the same in apical and basal kernels on a fresh weight basis. ABA catabolism activity was three to four-fold higher in placenta than endosperm, and activity was higher in apical than basal kernels. In vitro incubation tests indicated that glucose did not affect ABA catabolism. We conclude that placenta tissue plays an important role in ABA catabolism, and together with ABA influx and compartmentation, determine the rate of ABA transport into endosperms.


Assuntos
Ácido Abscísico/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Água/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Cromatografia , Dessecação , Ensaio de Imunoadsorção Enzimática , Glucose/metabolismo , Fatores de Tempo , Trítio , Zea mays/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA