Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929905

RESUMO

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Assuntos
Ecdisterona/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/parasitologia , Animais , Anopheles/parasitologia , Culicidae , Ecdisterona/fisiologia , Feminino , Células HEK293 , Humanos , Insetos Vetores , Malária/parasitologia , Camundongos , Mosquitos Vetores , Células NIH 3T3 , Oogênese/fisiologia , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
2.
Nature ; 547(7662): 213-216, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28678779

RESUMO

The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.


Assuntos
Regulação da Expressão Gênica , Malária/parasitologia , Parasitos/metabolismo , Parasitos/patogenicidade , Fosfotransferases/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidade , Animais , Restrição Calórica , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Glucose/metabolismo , Glucose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/sangue , Parasitemia/genética , Parasitemia/metabolismo , Parasitemia/parasitologia , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fosfotransferases/deficiência , Fosfotransferases/genética , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Ratos , Transcriptoma/efeitos dos fármacos , Virulência/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31915293

RESUMO

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatopatias/genética , Alcaloides de Pirrolizidina/farmacologia , Animais , Transplante de Células , Quimera , Modelos Animais de Doenças , Feminino , Terapia Genética , Hepatite B , Vírus da Hepatite B , Hepatócitos/transplante , Proteínas de Homeodomínio/genética , Humanos , Hidrolases/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Fígado/patologia , Hepatopatias/patologia , Malária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Plasmodium falciparum
4.
Proc Natl Acad Sci U S A ; 116(20): 9979-9988, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028144

RESUMO

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αß-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αß-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


Assuntos
Linfócitos Intraepiteliais/fisiologia , Fígado/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/patogenicidade , Esporozoítos/patogenicidade , Animais , Fígado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esporozoítos/crescimento & desenvolvimento
5.
Gastroenterology ; 156(6): 1788-1804.e13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30641053

RESUMO

BACKGROUND & AIMS: Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS: Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS: Exposure to 17ß-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS: In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING: The accession number in the Gene Expression Omnibus is GSE92544.


Assuntos
Carcinoma Hepatocelular/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Neoplasias Hepáticas/metabolismo , Fígado/crescimento & desenvolvimento , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Peixe-Zebra/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Hepatócitos , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Regeneração Hepática , Masculino , Tamanho do Órgão/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Cell Microbiol ; 19(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27404888

RESUMO

Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei-infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Fígado/patologia , Fígado/parasitologia , Malária/patologia , Plasmodium berghei/fisiologia , Trifosfato de Adenosina/análise , Animais , Linhagem Celular , Citosol/química , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Plasmodium berghei/crescimento & desenvolvimento
7.
J Nanobiotechnology ; 13: 48, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26250828

RESUMO

BACKGROUND: Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens. RESULTS: For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy. CONCLUSIONS: Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need.


Assuntos
Ouro/química , Malária/diagnóstico , Nanopartículas Metálicas/química , Mycobacterium tuberculosis/isolamento & purificação , Plasmodium/isolamento & purificação , Tuberculose/diagnóstico , Colorimetria/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA de Protozoário/análise , DNA de Protozoário/genética , Humanos , Malária/parasitologia , Nanotecnologia/métodos , Plasmodium/genética , Sistemas Automatizados de Assistência Junto ao Leito , Tuberculose/microbiologia
8.
J Immunol ; 189(3): 1202-8, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732586

RESUMO

γδ T cells play key nonredundant roles in immunity to infections and tumors. Thus, it is critical to understand the molecular mechanisms responsible for γδ T cell activation and expansion in vivo. In striking contrast to their αß counterparts, the costimulation requirements of γδ T cells remain poorly understood. Having previously described a role for the TNFR superfamily member CD27, we since screened for other nonredundant costimulatory receptors in γδ T cell activation. We report in this article that the Ig superfamily receptor CD28 (but not its related protein ICOS) is expressed on freshly isolated lymphoid γδ T cells and synergizes with the TCR to induce autocrine IL-2 production that promotes γδ cell survival and proliferation in both mice and humans. Specific gain-of-function and loss-of-function experiments demonstrated a nonredundant function for CD28 interactions with its B7 ligands, B7.1 (CD80) and B7.2 (CD86), both in vitro and in vivo. Thus, γδ cell proliferation was significantly enhanced by CD28 receptor agonists but abrogated by B7 Ab-mediated blockade. Furthermore, γδ cell expansion following Plasmodium infection was severely impaired in mice genetically deficient for CD28. This resulted in the failure to mount both IFN-γ-mediated and IL-17-mediated γδ cell responses, which contrasted with the selective effect of CD27 on IFN-γ-producing γδ cells. Our data collectively show that CD28 signals are required for IL-2-mediated survival and proliferation of both CD27(+) and CD27(-) γδ T cell subsets, thus providing new mechanistic insight for their modulation in disease models.


Assuntos
Antígenos B7/fisiologia , Antígenos CD28/fisiologia , Proliferação de Células , Interleucina-2/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Sobrevivência Celular/imunologia , Células Cultivadas , Humanos , Interleucina-2/fisiologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium falciparum/imunologia , Subpopulações de Linfócitos T/parasitologia , Subpopulações de Linfócitos T/patologia
9.
Sci Adv ; 10(17): eadm9281, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657074

RESUMO

Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-ß, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.


Assuntos
Ritmo Circadiano , Hepatócitos , Inflamação , Fígado , Humanos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Inflamação/metabolismo , Fígado/metabolismo , Acetaminofen/farmacologia , Atorvastatina/farmacologia , Citocinas/metabolismo , Inativação Metabólica , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Cultivadas
10.
Proc Natl Acad Sci U S A ; 107(34): 15117-22, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696894

RESUMO

Dynamic changes in gene positioning contribute to differential expression of virulence-related gene families in protozoan pathogens; however, the role of nuclear architecture in gene expression in the human malaria parasite Plasmodium falciparum remains poorly understood. Here we investigated the developmentally regulated ribosomal RNA (rRNA) gene family in P. falciparum, which, unlike that in most eukaryotes, contains only a few unlinked copies of rRNA genes scattered over the subtelomeric regions of several chromosomes. We show that active and silent members of this gene family cluster in a single perinuclear nucleolus. This rDNA nuclear confinement is DNA sequence dependent, as plasmids carrying rDNA fragments are targeted to the nucleolus. Likewise, insertion of an rDNA sequence into a subtelomere from a chromosome lacking rRNA genes leads to repositioning in the nucleolus. Furthermore, we observed that rDNA spatial organization restricted interchromosomal interactions, as chromosome end-bearing rRNA genes were found to be preferentially juxtaposed, demonstrating nonrandom association of telomeres. Using Br-UTP incorporation, we observed two alpha-amanitin-resistant nucleolar transcription sites that disappeared when the rDNA cluster broke up in the replicative blood stages. Taken together, our results provide conceptual insights into functionally differentiated nuclear territories and their role in gene expression in malaria parasites.


Assuntos
DNA de Protozoário/genética , DNA Ribossômico/genética , Plasmodium falciparum/genética , Animais , Sequência de Bases , Nucléolo Celular/genética , Cromossomos/genética , Primers do DNA/genética , Regulação da Expressão Gênica , Genes de Protozoários , Humanos , Hibridização in Situ Fluorescente , Modelos Genéticos , Família Multigênica , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Virulência/genética
11.
iScience ; 26(2): 105940, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36718363

RESUMO

Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.

12.
Antimicrob Agents Chemother ; 56(3): 1281-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155828

RESUMO

Severe forms of malaria infection, such as cerebral malaria (CM) and acute lung injury (ALI), are mainly caused by the apicomplexan parasite Plasmodium falciparum. Primary therapy with quinine or artemisinin derivatives is generally effective in controlling P. falciparum parasitemia, but mortality from CM and other forms of severe malaria remains unacceptably high. Herein, we report the design and synthesis of a novel carbon monoxide-releasing molecule (CO-RM; ALF492) that fully protects mice against experimental CM (ECM) and ALI. ALF492 enables controlled CO delivery in vivo without affecting oxygen transport by hemoglobin, the major limitation in CO inhalation therapy. The protective effect is CO dependent and induces the expression of heme oxygenase-1, which contributes to the observed protection. Importantly, when used in combination with the antimalarial drug artesunate, ALF492 is an effective adjunctive and adjuvant treatment for ECM, conferring protection after the onset of severe disease. This study paves the way for the potential use of CO-RMs, such as ALF492, as adjunctive/adjuvant treatment in severe forms of malaria infection.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antimaláricos/síntese química , Monóxido de Carbono/metabolismo , Malária Cerebral/tratamento farmacológico , Compostos Organometálicos/síntese química , Plasmodium berghei/efeitos dos fármacos , Tiogalactosídeos/síntese química , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Carboxihemoglobina/metabolismo , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Malária Cerebral/metabolismo , Malária Cerebral/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Plasmodium berghei/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Índice de Gravidade de Doença , Tiogalactosídeos/farmacologia , Tiogalactosídeos/uso terapêutico
13.
Trends Parasitol ; 38(9): 748-757, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35672200

RESUMO

Malaria-causing Plasmodium parasites undergo multiple phenotypic transitions as they cycle between diverse niches in the mammalian and mosquito hosts. Recent applications of single-cell technologies to Plasmodium have enabled the systematic investigation of the distinct stages across the life cycle. Most single-cell data have focused on the parasite exclusively, but a few studies have started to profile both parasite and host cells to shed light on the heterogeneity of cell states that underpin host-parasite interactions. In this opinion article, we highlight how atlasing initiatives are starting to be used to infer functional interactions between parasite and host and could be a powerful tool in drug discovery and vaccine development.


Assuntos
Culicidae , Malária , Plasmodium , Animais , Culicidae/parasitologia , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Malária/parasitologia , Malária/prevenção & controle , Mamíferos
14.
Curr Opin Microbiol ; 70: 102207, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183663

RESUMO

A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.


Assuntos
Antígenos de Protozoários , Malária Falciparum , Plasmodium falciparum , Humanos , Variação Antigênica , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Genes de Protozoários , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
15.
Nat Commun ; 13(1): 4123, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840625

RESUMO

Plasmodium vivax is the most widespread human malaria parasite. Due to the presence of extravascular reservoirs and relapsing infections from dormant liver stages, P. vivax is particularly difficult to control and eliminate. Experimental research is hampered by the inability to maintain P. vivax cultures in vitro, due to its tropism for immature red blood cells (RBCs). Here, we describe a new humanized mice model that can support efficient human erythropoiesis and maintain long-lasting multiplication of inoculated cryopreserved P. vivax parasites and their sexual differentiation, including in bone marrow. Mature gametocytes were transmitted to Anopheles mosquitoes, which led to the formation of salivary gland sporozoites. Importantly, blood-stage P. vivax parasites were maintained after the secondary transfer of fresh or frozen infected bone marrow cells to naïve chimeras. This model provides a unique tool for investigating, in vivo, the biology of intraerythrocytic P. vivax.


Assuntos
Anopheles , Malária Vivax , Animais , Anopheles/parasitologia , Humanos , Malária Vivax/parasitologia , Camundongos , Recidiva Local de Neoplasia , Plasmodium vivax , Esporozoítos
16.
Cell Host Microbe ; 30(7): 1048-1060.e5, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35443155

RESUMO

Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.


Assuntos
Malária Vivax , Malária , Hepatócitos/parasitologia , Humanos , Fígado/parasitologia , Malária/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/genética
17.
Stem Cell Reports ; 17(10): 2286-2302, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084636

RESUMO

Liver damage and an exacerbated inflammatory response are hallmarks of Ebola virus (EBOV) infection. Little is known about the intrinsic response to infection in human hepatocytes and their contribution to inflammation. Here, we present an induced pluripotent stem cell (iPSC)-derived hepatocyte-like cell (HLC) platform to define the hepato-intrinsic response to EBOV infection. We used this platform to show robust EBOV infection, with characteristic ultrastructural changes and evidence for viral replication. Transcriptomics analysis revealed a delayed response with minimal early transcriptomic changes, followed by a general downregulation of hepatic function and upregulation of interferon signaling, providing a potential mechanism by which hepatocytes participate in disease severity and liver damage. Using RNA-fluorescence in situ hybridization (FISH), we showed that IFNB1 and CXCL10 were mainly expressed in non-infected bystander cells. We did not observe an inflammatory signature during infection. In conclusion, iPSC-HLCs are an immune competent platform to study responses to EBOV infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Células-Tronco Pluripotentes Induzidas , Ebolavirus/fisiologia , Hepatócitos , Humanos , Hibridização in Situ Fluorescente , Interferons , Fígado , RNA
18.
Nucleic Acids Res ; 37(8): 2596-606, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270070

RESUMO

Increasing experimental evidence shows a prominent role of histone modifications in the coordinated control of gene expression in the human malaria parasite Plasmodium falciparum. The search for the histone-mark-reading machinery that translates histone modifications into biological processes, such as formation of heterochromatin and antigenic variation is of foremost importance. In this work, we identified the first member of a histone modification specific recognition protein, an orthologue of heterochromatin protein 1 (PfHP1). Analysis of the PfHP1 amino-acid sequence revealed the presence of the two characteristic HP1 domains: a chromodomain (CD) and a chromo shadow domain (CSD). Recombinant CD binds to di- and tri-methylated lysine 9 from histone H3, but not to unmodified or methylated histone H3 in lysine 4. PfHP1 is able to interact with itself to form dimers, underlying its potential role in aggregating nucleosomes to form heterochromatin. Antibodies raised against PfHP1 detect this molecule in foci at the perinuclear region. ChIP analysis using anti-PfHP1 shows that this protein is linked to heterochromatin of subtelomeric non-coding repeat regions and monoallelic expression of the major virulence var gene family. This is the first report implicating an HP1 protein in the control of antigenic variation of a protozoan parasite.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Núcleo Celular/química , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/química , Regulação da Expressão Gênica , Histonas/química , Lisina/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Plasmodium falciparum/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/análise , Proteínas de Protozoários/química , Sequências Repetitivas de Ácido Nucleico , Telômero/química , Fatores de Virulência/genética
19.
Trends Parasitol ; 37(10): 853-855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391664

RESUMO

Microbiota composition recently arose as a factor correlating with malaria infection. Mandal et al. showed, via cecal transplant and antibacterial treatment, that the mouse microbiota modulates parasitemia by affecting spleen germinal centers where B cells are matured. They further identified correlations between microbiota composition and malaria severity in Ugandan children.


Assuntos
Antimaláricos , Malária , Microbiota , Animais , Formação de Anticorpos , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Camundongos , Parasitemia/tratamento farmacológico
20.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31852843

RESUMO

Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention.


Assuntos
Antimaláricos/farmacologia , Malária/prevenção & controle , Metformina/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Quimioterapia Combinada/métodos , Hepatócitos , Humanos , Concentração Inibidora 50 , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/sangue , Malária/tratamento farmacológico , Malária/parasitologia , Masculino , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Metformina/uso terapêutico , Camundongos , Carga Parasitária , Testes de Sensibilidade Parasitária , Plasmodium berghei/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Primaquina/farmacologia , Primaquina/uso terapêutico , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA