Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Phys Rev Lett ; 125(3): 037202, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745422

RESUMO

We present comprehensive electron spin resonance (ESR) studies of in-plane oriented single crystals of α-RuCl_{3}, a quasi-two-dimensional material with honeycomb structure, focusing on its high-field spin dynamics. The measurements were performed in magnetic fields up to 16 T, applied along the [110] and [100] directions. Several ESR modes were detected. Combining our findings with recent inelastic neutron- and Raman-scattering data, we identified most of the observed excitations. Most importantly, we show that the low-temperature ESR response beyond the boundary of the magnetically ordered region is dominated by single- and two-particle processes with magnons as elementary excitations. The peculiarities of the excitation spectrum in the vicinity of the critical field are discussed.

2.
Phys Rev Lett ; 120(4): 047601, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437453

RESUMO

We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at T_{c}=200 K in the strongly spin-orbit coupled correlated metal Cd_{2}Re_{2}O_{7}. We establish that the structural distortion at T_{c} is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near T_{c}. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.

3.
Nat Mater ; 15(7): 733-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27043779

RESUMO

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.


Assuntos
Campos Magnéticos , Imãs , Modelos Químicos , Teoria Quântica , Soluções/química , Marcadores de Spin , Temperatura Baixa , Simulação por Computador , Doses de Radiação
4.
Phys Rev Lett ; 119(23): 237203, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286699

RESUMO

The insulating honeycomb magnet α-RuCl_{3} exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir^{3+} substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru_{1-x}Ir_{x}Cl_{3} show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x>0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl_{3}.

5.
Phys Rev Lett ; 119(22): 227201, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286790

RESUMO

We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl_{3} as a function of temperature T, magnetic field B, and photon energy ℏω in the range ∼0.3-8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that threefold rotational symmetry is broken in the honeycomb plane from 2 to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Néel temperature of 7 K at B=0 that we identify as the magnetic-dipole excitation of a zero-wave-vector magnon, or antiferromagnetic resonance (AFMR). With the application of B, the AFMR broadens and shifts to a lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From a direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the dc susceptibility from a magnetic excitation continuum.

6.
Phys Rev Lett ; 118(25): 257203, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696733

RESUMO

We investigate manifestations of topological order in monoaxial helimagnet Cr_{1/3}NbS_{2} by performing transport measurements on ultrathin crystals. Upon sweeping the magnetic field perpendicularly to the helical axis, crystals thicker than one helix pitch (48 nm) but much thinner than the magnetic domain size (∼1 µm) are found to exhibit sharp and hysteretic resistance jumps. We show that these phenomena originate from transitions between topological sectors with a different number of magnetic solitons. This is confirmed by measurements on crystals thinner than 48 nm-in which the topological sector cannot change-that do not exhibit any jump or hysteresis. Our results show the ability to deterministically control the topological sector of finite-size Cr_{1/3}NbS_{2} and to detect intersector transitions by transport measurements.

7.
Phys Rev Lett ; 117(23): 235701, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982606

RESUMO

The structural properties of LaCu_{6-x}Au_{x} are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu_{6} is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x_{c}=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x_{c}. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. The data and calculations presented here are consistent with the zero temperature termination of a continuous structural phase transition suggesting that the LaCu_{6-x}Au_{x} series hosts an elastic quantum critical point.

8.
Phys Rev Lett ; 114(13): 137402, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25884137

RESUMO

Monolayer transition metal dichalcogenides, a new class of atomically thin semiconductors, possess optically coupled 2D valley excitons. The nature of exciton relaxation in these systems is currently poorly understood. Here, we investigate exciton relaxation in monolayer MoSe_{2} using polarization-resolved coherent nonlinear optical spectroscopy with high spectral resolution. We report strikingly narrow population pulsation resonances with two different characteristic linewidths of 1 and <0.2 µeV at low temperature. These linewidths are more than 3 orders of magnitude narrower than the photoluminescence and absorption linewidth, and indicate that a component of the exciton relaxation dynamics occurs on time scales longer than 1 ns. The ultranarrow resonance (<0.2 µeV) emerges with increasing excitation intensity, and implies the existence of a long-lived state whose lifetime exceeds 6 ns.

9.
Nature ; 453(7197): 903-5, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18509332

RESUMO

The recent synthesis of the superconductor LaFeAsO(0.89)F(0.11) with transition temperature T(c) approximately 26 K (refs 1-4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO(0.84)F(0.16) (ref. 5), 43 K in SmFeAsO(0.9)F(0.1) (ref. 6), and 52 K in NdFeAsO(0.89)F(0.11) and PrFeAsO(0.89)F(0.11) (refs 7, 8). These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO(0.89)F(0.11) at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field B(c2) compared to values expected from the slopes dB(c2)/dT approximately 2 T K(-1) near T(c), particularly at low temperatures where the deduced B(c2)(0) approximately 63-65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with B(c2) values surpassing those of Nb(3)Sn, MgB(2) and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-T(c) copper oxides.

10.
Phys Rev Lett ; 110(9): 097003, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496739

RESUMO

We report on the infrared studies of the interlayer charge dynamics of a prototypical pnictide superconductor Ba(Fe(0.926)Co(0.074))(2)As(2). We succeeded in probing the intrinsic interlayer response by performing infrared experiments on the crystals with a cleaved ac surface. Our experiments identify the coexistence of the suppression of the electronic spectral weight and the development of a coherent Drude-like response in the normal state. The formation of the interlayer condensate is clearly observed in the superconducting state and appears to be linked to coherent contribution to the normal-state conductivity.

11.
Phys Rev Lett ; 108(16): 167202, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680752

RESUMO

We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb(2). The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

12.
Phys Rev Lett ; 108(14): 147002, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540817

RESUMO

We report an infrared optical study of the pnictide high-temperature superconductor BaFe(1.84)Co(0.16)As(2) and its parent compound BaFe(2)As(2). We demonstrate that electronic correlations are moderately strong and do not change across the spin-density wave transition or with doping. By examining the energy scale and direction of spectral weight transfer, we argue that Hund's coupling J is the primary mechanism that gives rise to correlations.

13.
Phys Rev Lett ; 109(2): 027006, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030200

RESUMO

We report on infrared studies of charge dynamics in a prototypical pnictide system: the BaFe2As2 family. Our experiments have identified hallmarks of the pseudogap state in the BaFe2As2 system that mirror the spectroscopic manifestations of the pseudogap in the cuprates. The magnitude of the infrared pseudogap is in accord with that of the spin-density-wave gap of the parent compound. By monitoring the superconducting gap of both P- and Co-doped compounds, we find that the infrared pseudogap is unrelated to superconductivity. The appearance of the pseudogap is found to correlate with the evolution of the antiferromagnetic fluctuations associated with the spin-density-wave instability. The strong-coupling analysis of infrared data further reveals the interdependence between the magnetism and the pseudogap in the iron pnictides.

14.
Phys Rev Lett ; 106(12): 127002, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21517343

RESUMO

It is shown that attempts to accurately deduce the magnetic penetration depth λ of overdoped BaFe(1.82)Co(0.18)As2 single crystals by transverse-field muon spin rotation (TF µSR) are thwarted by field-induced magnetic order and strong vortex-lattice disorder. We explain how substantial deviations from the magnetic field distribution of a nearly perfect vortex lattice by one or both of these factors is also significant for other iron-arsenic superconductors, and this introduces considerable uncertainty in the values of λ obtained by TF µSR.

15.
Nat Commun ; 12(1): 2779, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986275

RESUMO

While Mott insulators induced by Coulomb interactions are a well-recognized class of metal-insulator transitions, insulators purely driven by spin correlations are much less common, as the reduced energy scale often invites competition from other degrees of freedom. Here, we demonstrate a clean example of a spin-correlation-driven metal-insulator transition in the all-in-all-out pyrochlore antiferromagnet Cd2Os2O7, where the lattice symmetry is preserved by the antiferromagnetism. After the antisymmetric linear magnetoresistance from conductive, ferromagnetic domain walls is removed experimentally, the bulk Hall coefficient reveals four Fermi surfaces of both electron and hole types, sequentially departing the Fermi level with decreasing temperature below the Néel temperature, TN = 227 K. In Cd2Os2O7, the charge gap of a continuous metal-insulator transition opens only at T ~ 10 K << TN. The insulating mechanism parallels the Slater picture, but without a folded Brillouin zone, and contrasts sharply with Mott insulators and spin density waves, where the electronic gap opens above and at TN, respectively.

16.
Nat Commun ; 12(1): 3513, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112804

RESUMO

The Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we detect anomalous phonon effects in α-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. These phonon anomalies signify the coupling of phonon and Kitaev magnetic excitations in α-RuCl3 and demonstrates a proof-of-principle method to detect anomalous excitations in topological quantum materials.

17.
Nat Nanotechnol ; 16(7): 782-787, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33875873

RESUMO

Antiferromagnets are interesting materials for spintronics because of their faster dynamics and robustness against perturbations from magnetic fields. Control of the antiferromagnetic order constitutes an important step towards applications, but has been limited to bulk materials so far. Here, using spatially resolved second-harmonic generation, we show direct evidence of long-range antiferromagnetic order and Ising-type Néel vector switching in monolayer MnPSe3 with large XY anisotropy. In additional to thermally induced switching, uniaxial strain can rotate the Néel vector, aligning it to a general in-plane direction irrespective of the crystal axes. A change of the universality class of the phase transition in the XY model under uniaxial strain causes this emergence of strain-controlled Ising order in the XY magnet MnPSe3. Our discovery is a further ingredient for compact antiferromagnetic spintronic devices in the two-dimensional limit.

18.
Nat Commun ; 12(1): 171, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420023

RESUMO

In quantum magnets, magnetic moments fluctuate heavily and are strongly entangled with each other, a fundamental distinction from classical magnetism. Here, with inelastic neutron scattering measurements, we probe the spin correlations of the honeycomb lattice quantum magnet YbCl3. A linear spin wave theory with a single Heisenberg interaction on the honeycomb lattice, including both transverse and longitudinal channels of the neutron response, reproduces all of the key features in the spectrum. In particular, we identify a Van Hove singularity, a clearly observable sharp feature within a continuum response. The demonstration of such a Van Hove singularity in a two-magnon continuum is important as a confirmation of broadly held notions of continua in quantum magnetism and additionally because analogous features in two-spinon continua could be used to distinguish quantum spin liquids from merely disordered systems. These results establish YbCl3 as a benchmark material for quantum magnetism on the honeycomb lattice.

19.
Phys Rev Lett ; 104(3): 037001, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366674

RESUMO

We report the first NMR investigation of spin dynamics in the overdoped nonsuperconducting regime of Ba(Fe1-xCox)2As2 up to x=0.26. We demonstrate that the absence of interband transitions with large momentum transfer Q{AF} approximately (pi/a,0) between the hole and electron Fermi surfaces results in complete suppression of antiferromagnetic spin fluctuations for x greater than or approximately 0.15. Our experimental results provide direct evidence for a correlation between T{c} and the strength of Q{AF} antiferromagnetic spin fluctuations.

20.
Phys Rev Lett ; 105(15): 157003, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230930

RESUMO

We demonstrate that the changes in the elastic properties of the FeAs systems, as seen in our resonant ultrasound spectroscopy data, can be naturally understood in terms of fluctuations of emerging nematic degrees of freedom. Both the softening of the lattice in the normal, tetragonal phase as well as its hardening in the superconducting phase are consistently described by our model. Our results confirm the view that structural order is induced by magnetic fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA