Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 27(5): 425-437, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37141266

RESUMO

ABSTRACTObjectives: The aim of this study was thus to evaluate the effect of Cr supplementation on morphological changes and expression of pro-inflammatory cytokines in the hippocampus and on developmental parameters. Methods: Male Wistar rat pups were submitted to an experimental model of CP. Cr was administered via gavage from the 21st to the 28th postnatal day, and in water after the 28th, until the end of the experiment. Body weight (BW), food consumption (FC), muscle strength, and locomotion were evaluated. Expression of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry in the hippocampal hilus. Results: Experimental CP caused increased density and activation of microglial cells, and overexpression of IL-6. The rats with CP also presented abnormal BW development and impairment of strength and locomotion. Cr supplementation was able to reverse the overexpression of IL-6 in the hippocampus and mitigate the impairments observed in BW, strength, and locomotion. Discussion: Future studies should evaluate other neurobiological characteristics, including changes in neural precursor cells and other cytokines, both pro- and anti-inflammatory.


Assuntos
Paralisia Cerebral , Células-Tronco Neurais , Ratos , Animais , Masculino , Interleucina-6/genética , Interleucina-6/metabolismo , Creatina/metabolismo , Ratos Wistar , Hipocampo/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Microglia/metabolismo , Modelos Teóricos , Suplementos Nutricionais
2.
Nutr Neurosci ; 27(1): 20-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36576161

RESUMO

OBJECTIVES: This study aims to assess the effect of neonatal treatment with kaempferol on neuromotor development, proliferation of neural precursor cells, the microglia profile, and antioxidant enzyme gene expression in the hippocampus. METHODS: A rat model of cerebral palsy was established using perinatal anoxia and sensorimotor restriction of hindlimbs during infancy. Kaempferol (1 mg/ kg) was intraperitoneally administered during the neonatal period. RESULTS: Neonatal treatment with kaempferol reduces the impact of the cerebral palsy model on reflex ontogeny and on the maturation of physical features. Impairment of locomotor activity development and motor coordination was found to be attenuated by kaempferol treatment during the neonatal period in rats exposed to cerebral palsy. Neonatal treatment of kaempferol in cerebral palsy rats prevents a substantial reduction in the number of neural precursor cells in the dentate gyrus of the hippocampus, an activated microglia profile, and increased proliferation of microglia in the sub-granular zone and in the granular cell layer. Neonatal treatment with kaempferol increases gene expression of superoxide dismutase and catalase in the hippocampus of rats submitted to the cerebral palsy model. DISCUSSION: Kaempferol attenuates the impact of cerebral palsy on neuromotor behavior development, preventing altered hippocampal microglia activation and mitigating impaired cell proliferation in a neurogenic niche in these rats. Neonatal treatment with kaempferol also increases antioxidant defense gene expression in the hippocampus of rats submitted to the cerebral palsy model.


Assuntos
Paralisia Cerebral , Células-Tronco Neurais , Gravidez , Feminino , Animais , Ratos , Antioxidantes/farmacologia , Microglia , Quempferóis/farmacologia , Quempferóis/metabolismo , Hipocampo , Proliferação de Células
3.
Nutr Neurosci ; : 1-23, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963807

RESUMO

OBJECTIVES: The present study aims to evaluate the impact of early exposure to brain injury and malnutrition on episodic memory and behavior. METHODS: For this, a systematic review was carried out in the Medline/Pubmed, Web of Science, Scopus, and LILACS databases with no year or language restrictions. RESULTS: Initially, 1759 studies were detected. After screening, 53 studies remained to be read in full. The meta-analysis demonstrated that exposure to double insults worsens episodic recognition memory but does not affect spatial memory. Early exposure to low-protein diets has been demonstrated to aggravate locomotor and masticatory sequelae. Furthermore, it reduces the weight of the soleus muscle and the muscle fibers of the masseter and digastric muscles. Early exposure to high-fat diets promotes an increase in oxidative stress and inflammation in the brain, increasing anxiety- and depression-like behavior and reducing locomotion. DISCUSSION: Epigenetic modifications were noted in the hippocampus, hypothalamus, and prefrontal cortex depending on the type of dietetic exposure in early life. These findings demonstrate the impact of the double insult on regions involved in cognitive and behavioral processes. Additional studies are essential to understand the real impact of the double insults in the critical period.

4.
Nutr Neurosci ; : 1-19, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095869

RESUMO

Brain oxygen deprivation causes morphological damage involved in the formation of serious pathological conditions such as stroke and cerebral palsy. Therapeutic methods for post-hypoxia/anoxia injuries are limited and still have deficiencies in terms of safety and efficacy. Recently, clinical studies of stroke have reported the use of drugs containing riboflavin for post-injury clinical rehabilitation, however, the effects of vitamin B2 on exposure to cerebral oxygen deprivation are not completely elucidated. This review aimed to investigate the potential antioxidant, anti-inflammatory and neuroprotective effects of riboflavin in cerebral hypoxia/anoxia. After a systematic search, 21 articles were selected, 8 preclinical and 12 clinical studies, and 1 translational study. Most preclinical studies used B2 alone in models of hypoxia in rodents, with doses of 1-20 mg/kg (in vivo) and 0.5-5 µM (in vitro). Together, these works suggested greater regulation of lipid peroxidation and apoptosis and an increase in neurotrophins, locomotion, and cognition after treatment. In contrast, several human studies have administered riboflavin (5 mg) in combination with other Krebs cycle metabolites, except one study, which used only B2 (20 mg). A reduction in lactic acidosis and recovery of sensorimotor functions was observed in children after treatment with B2, while adults and the elderly showed a reduction in infarct volume and cognitive rehabilitation. Based on findings from preclinical and clinical studies, we conclude that the use of riboflavin alone or in combination acts beneficially in correcting the underlying brain damage caused by hypoxia/anoxia and its inflammatory, oxidative, and behavioral impairments.

5.
Nutr Neurosci ; 26(1): 25-39, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34905445

RESUMO

BACKGROUND: Obesity results from an unbalance in the ingested and burned calories. Energy balance (EB) is critically regulated by the hypothalamic arcuate nucleus (ARC) by promoting appetite or anorectic actions. Hypothalamic inflammation, driven by high activation of the microglia, has been reported as a key mechanism involved in the development of diet-induced obesity. Kaempferol (KF), a flavonoid-type polyphenol present in a large number of fruits and vegetables, was shown to regulate both energy metabolism and inflammation. OBJECTIVES: In this work, we studied the effects of both the central and peripheral treatment with KF on hypothalamic inflammation and EB regulation in mice with obesity. METHODS: Obese adult mice were chronically (40 days) treated with KF (0.5 mg/kg/day, intraperitoneally). During the treatment, body weight, food intake (FI), feed efficiency (FE), glucose tolerance, and insulin sensitivity were determined. Analysis of microglia activation in the ARC of the hypothalamus at the end of the treatment was also performed. Body weight, FI, and FE changes were also evaluated in response to 5µg KF, centrally administrated. RESULTS: Chronic administration of KF decreased ∼43% of the density, and ∼30% of the ratio, of activated microglia in the arcuate nucleus. These changes were accompanied by body weight loss, decreased FE, reduced fasting blood glucose, and a tendency to improve insulin sensitivity. Finally, acute central administration of KF reproduced the effects on EB triggered by peripheral administration. CONCLUSION: These findings suggest that KF might fight obesity by regulating central processes related to EB regulation and hypothalamic inflammation.


Assuntos
Resistência à Insulina , Microglia , Camundongos , Animais , Quempferóis/metabolismo , Quempferóis/farmacologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Hipotálamo/metabolismo , Peso Corporal , Núcleo Arqueado do Hipotálamo/metabolismo , Polifenóis/farmacologia , Inflamação/metabolismo , Redução de Peso , Camundongos Endogâmicos C57BL
6.
Can J Physiol Pharmacol ; 101(7): 327-339, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988145

RESUMO

Cerebral palsy (CP) is characterized by motor disorders, including deficits in locomotor activity, coordination, and balance. Selective serotonin reuptake inhibitors have been shown to play an important role in brain plasticity. This study investigates the effect of neonatal treatment using fluoxetine on locomotor activity and histomorphometric parameters of the primary somatosensory cortex (S1) in rats submitted to an experimental model of CP. CP was found to reduce bodyweight and locomotion parameters and also to increase the glia/neuron index in the S1. Administration of fluoxetine 10 mg/kg reduced bodyweight, impaired locomotor activity parameters, and increased the number of glial cells and the glia/neuron ratio in the S1 in rats with CP. However, treatment with fluoxetine 5 mg/kg was not found to be associated with adverse effects on locomotor activity and seems to improve histomorphometric parameters by way of minor changes in the S1 in animals with CP. These results thus indicate that experimental CP, in combination with the use of a high dose of fluoxetine (10 mg/kg), impairs locomotor and histomorphometric parameters in the S1, while treatment with a low dose of fluoxetine (5 mg/kg) averts the negative outcomes associated with a high dose of fluoxetine in relation to these parameters but produces no protective effect.


Assuntos
Paralisia Cerebral , Fluoxetina , Ratos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Paralisia Cerebral/tratamento farmacológico , Atividade Motora , Neurônios , Neuroglia , Locomoção
7.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955475

RESUMO

Diets high in bioactive compounds, such as polyphenols, have been used to mitigate metabolic syndrome (MetS). Polyphenols are a large group of naturally occurring bioactive compounds, classified into two main classes: non-flavonoids and flavonoids. Flavonoids are distributed in foods, such as fruits, vegetables, tea, red wine, and cocoa. Studies have already demonstrated the benefits of flavonoids on the cardiovascular and nervous systems, as well as cancer cells. The present review summarizes the results of clinical studies that evaluated the effects of flavonoids on the components of the MetS and associated complications when offered as supplements over the long term. The results show that flavonoids can significantly modulate several metabolic parameters, such as lipid profile, blood pressure, and blood glucose. Only theaflavin and catechin were unable to affect metabolic parameters. Moreover, only body weight and body mass index were unaltered. Thus, the evidence presented in this systematic review offers bases in support of a flavonoid supplementation, held for at least 3 weeks, as a strategy to improve several metabolic parameters and, consequently, reduce the risk of diseases associated with MetS. This fact becomes stronger due to the rare side effects reported with flavonoids.


Assuntos
Flavonoides , Síndrome Metabólica , Antioxidantes , Dieta , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Síndrome Metabólica/tratamento farmacológico , Polifenóis
8.
Nutr Neurosci ; 24(12): 927-939, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31766953

RESUMO

Purpose Children with cerebral palsy (CP) often exhibit difficulties in feeding resulting from deficits in chewing. This study investigates the therapeutic potential of L-tryptophan (TRI) to reduce deficits in chewing in rats subjected to an experimental model of CP.Methods A total of 80 Wistar albino rats were used. Pups were randomly assigned to 4 experimental groups: Control Saline, Control TRI, CP Saline, and CP TRI groups. The experimental model of CP was based on the combination of perinatal anoxia associated with postnatal sensorimotor restriction of the hind limbs. TRI was administered subcutaneously during the lactation period. Anatomical and behavioral parameters were evaluated during maturation, including body weight gain, food intake, chewing movements, relative weight and the distribution of the types of masseter muscle fibers.Results The induction of CP limited body weight gain, decreased food intake and led to impairment in the morphological and functional parameters of chewing. Moreover, for a comparable amount of food ingested, CP TRI animals grew the most. In addition, supplementation with TRI improved the number of chewing movements, and increased the weight and proportion of type IIB fibers of the masseter in rats subjected to CP.Conclusion These results demonstrate that experimental CP impaired the development of mastication and that TRI supplementation increased masticatory maturation in animals subjected to CP.


Assuntos
Paralisia Cerebral/fisiopatologia , Mastigação/efeitos dos fármacos , Mastigação/fisiologia , Triptofano/uso terapêutico , Animais , Paralisia Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Ingestão de Alimentos , Músculo Masseter/efeitos dos fármacos , Músculo Masseter/fisiopatologia , Fenótipo , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
9.
Can J Physiol Pharmacol ; 99(5): 490-498, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32941740

RESUMO

Serotonin (5-HT) acts as a neuromodulator and plays a critical role in brain development. Changes in 5-HT signaling during the perinatal period can affect neural development and may result in behavioral changes in adulthood; however, further investigations are necessary including both sexes to study possible differences. Thus, the aim of this study was to investigate the impact of neonatal treatment with fluoxetine on the development of male and female offspring. The animals were divided into four groups according to sex and treatment. The experimental groups received fluoxetine at 10 mg·kg-1 (1 µL/g of body weight (bw)) and the animals of control group received saline solution 0.9% (1 µL/g of bw) from postnatal days 1-21. In the neonatal period, reflex ontogeny, somatic development, physical features, and food intake were recorded. In the postnatal period (until day 31) bw and post-weaning food intake were recorded. Chronic administration of fluoxetine in the neonatal period caused a delay in the reflex ontogeny and somatic development, as well as reduction of lactation, post-weaning bw, and post-weaning food intake in rats. No difference was found between the sexes. These changes reaffirm that serotonin plays an important role in regulating the plasticity of the brain during the early development period, but without sex differences.


Assuntos
Fluoxetina , Animais , Peso Corporal , Feminino , Masculino , Gravidez , Ratos , Inibidores Seletivos de Recaptação de Serotonina , Desmame
10.
Nutr Neurosci ; 22(5): 373-374, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29058562

RESUMO

Children with cerebral palsy commonly present with feeding difficulties that result from multiple orofacial sequelae, especially deficits in mastication. A previous study demonstrated that perinatal protein undernutrition accentuated the chewing impact in an experimental model of cerebral palsy. Therefore, the present study investigated whether nutritional manipulation reversed or minimized the chewing sequelae in cerebral palsy. We emphasized the relevance of evaluating the therapeutic potential of nutrients, especially tryptophan supplementation, to reduce the chewing deficits that are typical of this syndrome. Clarification of the role of nutrients may help in the development of new treatment strategies for these children.


Assuntos
Paralisia Cerebral/dietoterapia , Suplementos Nutricionais , Modelos Animais de Doenças , Mastigação , Triptofano/uso terapêutico , Animais , Humanos , Resultado do Tratamento
11.
Nutr Neurosci ; 22(2): 98-109, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28750597

RESUMO

Objective: The main goal of the present study was to investigate the effects of two maternal high-fat diets with different energy densities on the somatic growth, reflex ontogeny, and locomotor activity of offspring. Methods: Twenty-nine female Wistar rats (220-250 g) were mated and grouped into three different dietary conditions: control (n = 11, AIN-93G diet, 3.6 kcal/g), high-fat/high-caloric (HH, n = 9, 51% of the calories from fat, 4.62 kcal/g), and high-fat/isocaloric (HI, n = 9, 51% of the calories from fat, 3.64 kcal/g). The fat source was mainly lard. The dietary groups were maintained during gestation and lactation. From postnatal day 1 (PND1) until weaning, the somatic growth, maturation of physical features, and reflex ontogeny of the male pups were evaluated. The locomotor activity was evaluated in an open field at PND8, PND14, PND17, PND21, PND30, PND45, and PND60. Results: HH dams had a lower food intake but no difference in caloric intake or body weight gain. The HH pups had higher body weights, greater tail and body lengths, and an increased axis of the head at weaning. The prediction of ear unfolding, delayed palmar grasp, and cliff avoidance maturation were also observed in the HH offspring. At PND60, the HH pups showed an increased average speed as well as an average potency and kinetic energy in the open field. Conclusion: A high-fat/high-caloric maternal diet increases somatic growth, predicts the maturation of physical features, and delays reflex ontogeny during lactation, and it enhances motor performance during late adolescence. A maternal HI diet does not elicit the same influences on offspring development compared with the HH diet.


Assuntos
Dieta Hiperlipídica , Locomoção , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Reflexo , Animais , Feminino , Lactação , Gravidez , Ratos Wistar , Aumento de Peso
12.
Pharmacol Res ; 136: 194-204, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30196103

RESUMO

Selective Serotonin Reuptake Inhibitors (SSRIs) may have side effects, such as stiffness, tremors and altered tonic activity, as well as an increased risk of developing insulin resistance and diabetes mellitus. However, little is known about the structural, functional and metabolic changes of skeletal muscle after administration of SSRIs. The aim of this systematic review was to explore and discuss the effects of SSRIs on skeletal muscle properties described in human and rodent studies. A systematic search of PUBMED, SCOPUS, and WEB OF SCIENCE was performed. The inclusion criteria were intervention studies in humans and rodents that analysed the effects of SSRIs on skeletal muscle properties. The research found a total of six human studies, including two randomized controlled trials, one non-randomized controlled trial, one uncontrolled before-after study and two case reports, and six preclinical studies in rodents. Overall, the studies in humans and rodents showed altered electrical activity in skeletal muscle function, assessed through electromyography (EMG) and needle EMG in response to chronic treatment or local injection with SSRIs. In addition, rodent studies reported that SSRIs may exert effects on muscle weight, the number of myocytes and the cross-sectional area of skeletal muscle fibre. The results showed effects in energy metabolism associated with chronic SSRI use, reporting altered levels of glycogen synthase activity, acetyl-CoA carboxylase phosphorylation, citrate synthase activity, and protein kinase B Ser phosphorylation. Moreover, changes in insulin signalling and glucose uptake were documented. In this context, we concluded based on human and rodent studies that SSRIs affect electrical muscle activity, structural properties and energy metabolism in skeletal muscle tissue. However, these changes varied according to pre-existing metabolic and functional conditions in the rodents and humans.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Humanos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia
13.
Horm Metab Res ; 49(6): 472-479, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28431449

RESUMO

The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity.


Assuntos
Metabolismo Energético , Glucocorticoides/metabolismo , Transdução de Sinais , Animais , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
15.
J Strength Cond Res ; 30(12): 3531-3538, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27870699

RESUMO

Antonio-Santos, J, Ferreira, DJS, Gomes Costa, GL, Matos, RJB, Toscano, AE, Manhães-de-Castro, R, and Leandro, CG. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res 30(12): 3531-3538, 2016-Resistance training (RT) is related to improved muscular strength and power output. Different programs of RT for rats have been developed, but peripheral and central response has not been evaluated directly in the same animal. To test the hypothesis that RT induces central and peripheral adaptations, this study evaluated the effects of a RT on the performance of a weekly maximum overload test, fiber-type typology, and brain neurotrophic factors in young adult rats. Thirty-one male Wistar rats (65 ± 5 days) were divided in 2 groups: nontrained (NT, n = 13) and trained (T, n = 18). Trained group was submitted to a program of RT ladder climbing, gradually added mass, 5 days per week during 8 weeks at 80% of individual maximum overload. This test was weekly performed to adjust the individual load throughout the weeks for both groups. After 48 hours from the last session of exercise, soleus and extensor digital longus (EDL) muscles were removed for myofibrillar ATPase staining analysis. Spinal cord, motor cortex, and cerebellum were removed for RT-PCR analysis of BDNF and insulin-like growth factor-1 (IGF-1) gene expression. In EDL muscle, T animals showed an increase in the proportion of type IIb fibers and a reduction of type IIa fibers. Insulin-like growth factor-1 gene expression was reduced in the cerebellum of T animals (NT: 1.025 ± 0.12; T: 0.57 ± 0.11). Our data showed that 8 weeks of RT were enough to increase maximum overload capacity and the proportion of glycolytic muscle fibers, but there were no associations with the expression of growth neurotrophic factors.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fibras Musculares Esqueléticas/patologia , Condicionamento Físico Animal , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Ratos , Ratos Wistar
16.
Br J Nutr ; 114(9): 1515-30, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26337745

RESUMO

Little is known about the effects of undernutrition on the specific muscles and neuronal circuits involved in mastication. The aim of this study was to document the effects of neonatal low-protein diet on masticatory efficiency. Newborn rats whose mothers were fed 17% (nourished (N), n 60) or 8% (undernourished (U), n 56) protein were compared. Their weight was monitored and their masticatory jaw movements were video-recorded. Whole-cell patch-clamp recordings were performed in brainstem slice preparations to investigate the intrinsic membrane properties and N-methyl-d-aspartate-induced bursting characteristics of the rhythmogenic neurons (N, n 43; U, n 39) within the trigeminal main sensory nucleus (NVsnpr). Morphometric analysis (N, n 4; U, n 5) were conducted on masseteric muscles serial cross-sections. Our results showed that undernourished animals had lower numbers of masticatory sequences (P=0·049) and cycles (P=0·045) and slower chewing frequencies (P=0·004) (N, n 32; U, n 28). Undernutrition reduced body weight but had little effect on many basic NVsnpr neuronal electrophysiological parameters. It did, however, affect sag potentials (P<0·001) and rebound firing (P=0·005) that influence firing pattern. Undernutrition delayed the appearance of bursting and reduced the propensity to burst (P=0·002), as well as the bursting frequency (P=0·032). Undernourished animals showed increased and reduced proportions of fibre type IIA (P<0·0001) and IIB (P<0·0001), respectively. In addition, their fibre areas (IIA, P<0·001; IIB, P<0·001) and perimeters (IIA, P<0·001; IIB, P<0·001) were smaller. The changes observed at the behavioural, neuronal and muscular levels suggest that undernutrition reduces chewing efficiency by slowing, weakening and delaying maturation of the masticatory muscles and the associated neuronal circuitry.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Mastigação/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Eletrofisiológicos , Feminino , Arcada Osseodentária/fisiologia , Masculino , Desnutrição/patologia , N-Metilaspartato/efeitos adversos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Núcleos do Trigêmeo/metabolismo
17.
Dev Med Child Neurol ; 57(5): 470-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25530042

RESUMO

AIM: The aim of this study was to analyse the influence of birthweight on motor performance and body composition in children. Further, we investigated whether associations between birthweight and motor performance changed after adjustment for current height, body mass index (BMI), fat-free mass (FFM), and % body fat. METHOD: A total of 483 children (251 males and 232 females) aged 7 to 10 years (mean 8.78, SD 1.0y) born in Vitória Santo Antão (northeast Brazil) were sampled. Motor performance was operationalized using different physical fitness components and gross motor coordination. Physical fitness was measured by handgrip strength, muscle endurance, explosive power, flexibility, agility, running speed, and maximal oxygen consumption (VO2max). Gross motor coordination was evaluated by means of the Körper Koordination Test für Kinder (KTK). RESULTS: Positive correlations between birthweight and height, BMI, and FFM were found. Birthweight was positively correlated with handgrip strength and negatively correlated with 20-meter sprint time, even after controlling for age, height, BMI, FFM, and % body fat. Birthweight was negatively associated with relative VO2max (mL/kg/min); however, the association was no longer significant after inclusion of BMI or FFM in the model. INTERPRETATION: Birthweight significantly predicted height, BMI, FFM, and performance in strength and velocity tests, but did not influence gross motor coordination.


Assuntos
Peso ao Nascer/fisiologia , Composição Corporal/fisiologia , Índice de Massa Corporal , Aptidão Física/fisiologia , Desempenho Psicomotor/fisiologia , Brasil/epidemiologia , Criança , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia
18.
Br J Nutr ; 112(3): 328-37, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24823946

RESUMO

Skeletal muscle exhibits a remarkable flexibility in the usage of fuel in response to the nutrient intake and energy demands of the organism. In fact, increased physical activity and fasting trigger a transcriptional programme in skeletal muscle cells leading to a switch from carbohydrate to lipid oxidation. Impaired metabolic flexibility has been reported to be associated with obesity and type 2 diabetes, but it is not known whether the disability to adapt to metabolic demands is a cause or a consequence of these pathological conditions. Inasmuch as a poor nutritional environment during early life is a predisposing factor for the development of metabolic diseases in adulthood, in the present study, we aimed to determine the long-term effects of maternal malnutrition on the metabolic flexibility of offspring skeletal muscle. To this end, the transcriptional responses of the soleus and extensor digitorum longus muscles to fasting were evaluated in adult rats born to dams fed a control (17 % protein) or a low-protein (8 % protein, protein restricted (PR)) diet throughout pregnancy and lactation. With the exception of reduced body weight and reduced plasma concentrations of TAG, PR rats exhibited a metabolic profile that was the same as that of the control rats. In the fed state, PR rats exhibited an enhanced expression of key regulatory genes of fatty acid oxidation including CPT1a, PGC-1α, UCP3 and PPARα and an impaired expression of genes that increase the capacity for fat oxidation in response to fasting. These results suggest that impaired metabolic inflexibility precedes and may contribute to the development of metabolic disorders associated with early malnutrition.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Músculo Esquelético/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Transcrição Gênica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Metabolismo dos Carboidratos , Carnitina O-Palmitoiltransferase/genética , Metabolismo Energético , Ativação Enzimática , Jejum , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Canais Iônicos/genética , Lactação , Metabolismo dos Lipídeos , Masculino , Metaboloma , Proteínas Mitocondriais/genética , Oxirredução , PPAR alfa/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Gravidez , Ratos , Ratos Wistar , Fatores de Transcrição/genética , Proteína Desacopladora 3
19.
Can J Physiol Pharmacol ; 92(4): 330-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24708216

RESUMO

The brain, more than any other organ in the body, is vulnerable to oxidative stress damage, owing to its requirement for high levels of oxygenation. This is needed to fulfill its metabolic needs in the face of relatively low levels of protective antioxidants. Recent studies have suggested that oxidative stress is directly involved in the etiology of both eating and anxiety behavior. The aim of this study was to evaluate the effect of fluoxetine-inhibited serotonin reuptake in nursing rat neonates on behavior and on oxidative stress in the hypothalamus and the hippocampus; brain areas responsible for behavior related to food and anxiety, respectively. The results show that increased serotonin levels during a critical period of development do not induce significant differences in food-related behavior (intake and satiety), but do result in a in a significant decrease in anxiety. Measurements of oxidative stress showed a significant reduction of lipid peroxidation in the hippocampus (57%). In the hypothalamus, antioxidant enzymes were unchanged, but in the hippocampus, the activity of catalase and glutathione-S-transferase was increased (80% and 85% respectively). This suggests that protecting neural cells from oxidative stress during brain development contributes to the anxiolytic effects of serotonin.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/prevenção & controle , Comportamento Animal/efeitos dos fármacos , Fluoxetina/uso terapêutico , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Animais , Animais Recém-Nascidos , Ansiolíticos/farmacologia , Ansiedade/metabolismo , Ansiedade/psicologia , Comportamento Animal/fisiologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
20.
Behav Brain Res ; 462: 114869, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38246396

RESUMO

The aim of this review was to summarize and discuss the impact of a maternal high-fat diet on the locomotor activity of offspring during anxiety-related behavioral tests. A search was performed in the LILACS, Web of Science, SCOPUS and PUMBED databases, using the following inclusion criteria: studies in which rodent dams were submitted to a high-fat diet during gestation and/or lactation and in which the locomotor activity parameters of offspring were evaluated during an anxiety-related test. Twenty-three articles met these criteria and were included. Most studies, 14 out of 23, found that a maternal high-fat diet did not alter offspring locomotor activity. Six articles found that a maternal high-fat diet increased the locomotor activity of offspring, while three found decreased locomotion. This effect may be associated with the initial response to the test and the fact that it was the first day of exposure to the apparatus.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Lactação , Ansiedade , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA