Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(2): 916-931, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38235686

RESUMO

Electrospinning has become a widely used and efficient method for manufacturing nanofibers from diverse polymers. This study introduces an advanced electrospinning technique, Xspin - a multi-functional 3D printing platform coupled with electrospinning system, integrating a customised 3D printhead, MaGIC - Multi-channeled and Guided Inner Controlling printheads. The Xspin system represents a cutting-edge fusion of electrospinning and 3D printing technologies within the realm of pharmaceutical sciences and biomaterials. This innovative platform excels in the production of novel fiber with various materials and allows for the creation of highly customized fiber structures, a capability hitherto unattainable through conventional electrospinning methodologies. By integrating the benefits of electrospinning with the precision of 3D printing, the Xspin system offers enhanced control over the scaffold morphology and drug release kinetics. Herein, we fabricated a model floating pharmaceutical dosage for the dual delivery of curcumin and ritonavir and thoroughly characterized the product. Fourier transform infrared (FTIR) spectroscopy demonstrated that curcumin chemically reacted with the polymer during the Xspin process. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the solid-state properties of the active pharmaceutical ingredient after Xspin processing. Scanning electron microscopy (SEM) revealed the surface morphology of the Xspin-produced fibers, confirming the presence of the bifiber structure. To optimize the quality and diameter control of the electrospun fibers, a design of experiment (DoE) approach based on quality by design (QbD) principles was utilized. The bifibers expanded to approximately 10-11 times their original size after freeze-drying and effectively entrapped 87% curcumin and 84% ritonavir. In vitro release studies demonstrated that the Xspin system released 35% more ritonavir than traditional pharmaceutical pills in 2 h, with curcumin showing complete release in pH 1.2 in 5 min, simulating stomach media. Furthermore, the absorption rate of curcumin was controlled by the characteristics of the linked polymer, which enables both drugs to be absorbed at the desired time. Additionally, multivariate statistical analyses (ANOVA, pareto chart, etc.) were conducted to gain better insights and understanding of the results such as discern statistical differences among the studied groups. Overall, the Xspin system shows significant potential for manufacturing nanofiber pharmaceutical dosages with precise drug release capabilities, offering new opportunities for controlled drug delivery applications.


Assuntos
Curcumina , Nanofibras , Preparações Farmacêuticas , Curcumina/química , Ritonavir , Sistemas de Liberação de Medicamentos , Polímeros/química , Liberação Controlada de Fármacos , Nanofibras/química
2.
Mol Pharm ; 20(12): 6504-6508, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37931027

RESUMO

Gene therapy is a promising approach with delivery of mRNA, small interference RNA, and plasmid DNA to elicit a therapeutic action in vitro using cationic or ionizable lipid nanoparticles. In the present study, a novel extrusion-based Sprayed Multi Adsorbed-droplet Reposing Technology (SMART) developed in-house was employed for the preparation, characterization, and transfection abilities of the green fluorescence protein (GFP) plasmid DNA in cancer cells in vitro. The results showed 100% encapsulation of pDNA (GFP) in LNPs of around 150 nm (N/P 5) indicating that the processes developed using SMART technology are consistent and can be utilized for commercial applications.


Assuntos
DNA , Nanopartículas , Plasmídeos/genética , DNA/genética , Transfecção , Tecnologia , Impressão Tridimensional , Lipídeos
3.
Mol Pharm ; 19(7): 2380-2389, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35670498

RESUMO

This study demonstrates the applicability of terahertz time-domain spectroscopy (THz-TDS) in evaluating the solid-state of the drug in selective laser sintering-based 3D printed dosage forms. Selective laser sintering is a powder bed-based 3D printing platform, which has recently demonstrated applicability in manufacturing amorphous solid dispersions (ASDs) through a layer-by-layer fusion process. When formulating ASDs, it is critical to confirm the final solid state of the drug as residual crystallinity can alter the performance of the formulation. Moreover, SLS 3D printing does not involve the mixing of the components during the process, which can lead to partially amorphous systems causing reproducibility and storage stability problems along with possibilities of unwanted polymorphism. In this study, a previously investigated SLS 3D printed ASD was characterized using THz-TDS and compared with traditionally used solid-state characterization techniques, including differential scanning calorimetry (DSC) and powder X-ray diffractometry (pXRD). THz-TDS provided deeper insights into the solid state of the dosage forms and their properties. Moreover, THz-TDS was able to detect residual crystallinity in granules prepared using twin-screw granulation for the 3D printing process, which was undetectable by the DSC and XRD. THz-TDS can prove to be a useful tool in gaining deeper insights into the solid-state properties and further aid in predicting the stability of amorphous solid dispersions.


Assuntos
Espectroscopia Terahertz , Varredura Diferencial de Calorimetria , Pós/química , Impressão Tridimensional , Reprodutibilidade dos Testes , Solubilidade , Espectroscopia Terahertz/métodos
4.
Pharm Res ; 39(11): 2905-2918, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109460

RESUMO

3D printed drug delivery systems have gained tremendous attention in pharmaceutical research due to their inherent benefits over conventional systems, such as provisions for customized design and personalized dosing. The present study demonstrates a novel approach of drop-on-demand (DoD) droplet deposition to dispense drug solutions precisely on binder jetting-based 3D printed multi-compartment tablets containing 3 model anti-viral drugs (hydroxychloroquine sulfate - HCS, ritonavir and favipiravir). The printing pressure affected the printing quality whereas the printing speed and infill density significantly impacted the volume dispersed on the tablets. Additionally, the DoD parameters such as nozzle valve open time and cycle time affected both dispersing volume and the uniformity of the tablets. The solid-state characterization, including DSC, XRD, and PLM, revealed that all drugs remained in their crystalline forms. Advanced surface analysis conducted by microCT imaging as well as Artificial Intelligence (AI)/Deep Learning (DL) model validation showed a homogenous drug distribution in the printed tablets even at ultra-low doses. For a four-hour in vitro drug release study, the drug loaded in the outer layer was released over 90%, and the drug incorporated in the middle layer was released over 70%. In contrast, drug encapsulated in the core was only released about 40%, indicating that outer and middle layers were suitable for immediate release while the core could be applied for delayed release. Overall, this study demonstrates a great potential for tailoring drug release rates from a customized modular dosage form and developing personalized drug delivery systems coupling different 3D printing techniques.


Assuntos
Antivirais , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Inteligência Artificial , Comprimidos/química , Excipientes/química , Liberação Controlada de Fármacos , Impressão Tridimensional
5.
AAPS PharmSciTech ; 24(1): 4, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447026

RESUMO

Three-dimensional (3D)-printed tablets prepared using powder-based printing techniques like selective laser sintering (SLS) typically disintegrate/dissolve and release the drug within a few minutes because of their inherent porous nature and loose structure. The goal of this study was to demonstrate the suitability of SLS 3DP technology for fabricating sustained-release dosages utilizing Kollidon® SR (KSR), a matrix-forming excipient composed of polyvinyl acetate and polyvinylpyrrolidone (8:2). A physical mixture (PM), comprising 10:85:5 (% w/w) of acetaminophen (ACH), KSR, and Candurin®, was sintered using a benchtop SLS 3D printer equipped with a 2.3-W 455-nm blue visible laser. After optimization of the process parameters and formulation composition, robust 3D-printed tablets were obtained as per the computer-aided design (CAD) model. Advanced solid-state characterizations by powder X-ray diffraction (PXRD) and wide-angle X-ray scattering (WAXS) confirmed that ACH remained in its native crystalline state after sintering. In addition, X-ray micro-computed tomography (micro-CT) studies revealed that the tablets contain a total porosity of 57.7% with an average pore diameter of 24.8 µm. Moreover, SEM images exhibited a morphological representation of the ACH sintered tablets' exterior surface. Furthermore, the KSR matrix 3D-printed tablets showed a sustained-release profile, releasing roughly 90% of the ACH over 12 h as opposed to a burst release from the free drug and PM. Overall, our work shows for the first time that KSR can be used as a suitable polymer matrix to create sustained-release dosage forms utilizing the digitally controllable SLS 3DP technology, showcasing an alternative technique and pharmaceutical excipient.


Assuntos
Excipientes , Impressão Tridimensional , Acetaminofen , Preparações de Ação Retardada , Povidona , Pós , Microtomografia por Raio-X
6.
AAPS PharmSciTech ; 23(1): 52, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35018574

RESUMO

Despite the fact that capsules play an important role in many dry powder inhalation (DPI) systems, few studies have been conducted to investigate the capsules' interactions with respirable powders. The effect of four commercially available hydroxypropyl methylcellulose (HPMC)inhalation-grade capsule types on the aerosol performance of two model DPI formulations (lactose carrier and a carrier-free formulation) at two different pressure drops was investigated in this study. There were no statistically significant differences in performance between capsules by using the carrier-based formulation. However, there were some differences between the capsules used for the carrier-free rifampicin formulation. At 2-kPa pressure drop conditions, Embocaps® VG capsules had a higher mean emitted fraction (EF) (89.86%) and a lower mean mass median aerodynamic diameter (MMAD) (4.19 µm) than Vcaps® (Capsugel) (85.54%, 5.10 µm) and Quali-V® I (Qualicaps) (85.01%, 5.09 µm), but no significant performance differences between Embocaps® and ACGcaps™ HI. Moreover, Embocaps® VG capsules exhibited a higher mean respirable fraction (RF)/fine particle fraction (FPF) with a 3-µm-sized cutoff (RF/FPF< 3 µm) (33.05%/35.36%) against Quali-V® I (28.16%/31.75%) (P < 0.05), and a higher RF/FPF with a 5-µm-sized cutoff (RF/FPF< 5 µm) (49.15%/52.57%) versus ACGcaps™ HI (38.88%/41.99%) (P < 0.01) at 4-kPa pressure drop condition. Aerosol performance variability, pierced-flap detachment, as well as capsule hardness and stiffness, may all influence capsule type selection in a carrier-based formulation. The capsule type influenced EF, RF, FPF, and MMAD in the carrier-free formulation.


Assuntos
Budesonida , Rifampina , Administração por Inalação , Aerossóis , Cápsulas , Química Farmacêutica , Inaladores de Pó Seco , Derivados da Hipromelose , Tamanho da Partícula , Pós
7.
Mol Pharm ; 18(10): 3894-3908, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529431

RESUMO

This research study utilized a light-sensitive drug, nifedipine (NFD), to understand the impact of processing parameters and formulation composition on drug degradation, crystallinity, and quality attributes (dimensions, hardness, disintegration time) of selective laser sintering (SLS)-based three-dimensional (3D)-printed dosage forms. Visible lasers with a wavelength around 455 nm are one of the laser sources used for selective laser sintering (SLS) processes, and some drugs such as nifedipine tend to absorb radiation at varying intensities around this wavelength. This phenomenon may lead to chemical degradation and solid-state transformation, which was assessed for nifedipine in formulations with varying amounts of vinyl pyrrolidone-vinyl acetate copolymer (Kollidon VA 64) and potassium aluminum silicate-based pearlescent pigment (Candurin) processed under different SLS conditions in the presented work. After preliminary screening, Candurin, surface temperature (ST), and laser speed (LS) were identified as the significant independent variables. Further, using the identified independent variables, a 17-run, randomized, Box-Behnken design was developed to understand the correlation trends and quantify the impact on degradation (%), crystallinity, and quality attributes (dimensions, hardness, disintegration time) employing qualitative and quantitative analytical tools. The design of experiments (DoEs) and statistical analysis observed that LS and Candurin (wt %) had a strong negative correlation on drug degradation, hardness, and weight, whereas ST had a strong positive correlation with drug degradation, amorphous conversion, and hardness of the 3D-printed dosage form. From this study, it can be concluded that formulation and processing parameters have a critical impact on stability and performance; hence, these parameters should be evaluated and optimized before exposing light-sensitive drugs to the SLS processes.


Assuntos
Composição de Medicamentos/métodos , Nifedipino/química , Impressão Tridimensional , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Dureza , Lasers , Nifedipino/análise , Nifedipino/síntese química , Nifedipino/efeitos da radiação , Fotólise , Impressão Tridimensional/normas , Comprimidos
8.
Pharm Res ; 38(1): 165-177, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33534130

RESUMO

AIM: The aim of this study was to fabricate polymeric microneedles, loaded with macrolides (erythromycin, azithromycin), using hyaluronic acid and polyvinyl pyrollidone. METHODS: These microneedles were fabricated using a vacuum micromolding technique. The integrity of the microneedle patches was studied by recording their morphologic features, folding endurance, swelling and micro-piercing. Physicochemical characteristics were studied by differential scanning calorimetry, thermogravimetric analysis and fourier transform infrared spectroscopy. In-vitro drug release, antibiofilm and effect of microneedle patch on wound healing were also studied to confirm the efficacy of the formulations. RESULTS: Formulated patches displayed acceptable folding endurance (>100) and uniform distribution of microneedles (10 × 10) that can penetrate parafilm. Differential scanning calorimetry results depict a decrease in the crystallinity of macrolides following their incorporation in to a polymer matrix. Percentage release of azithromycin and erythromycin from the polymeric patch formulations (over 30 min) was 90% and 63% respectively. Broadly, the zone of bacterial growth inhibition follows the same order for Staphylococcus aureus, Escherichia coli and Salmonella enterica. After 5 days of treatment with azithromycin patches, the wound healing was complete and skin structure (e.g. hair follicles and dermis) was regenerated. CONCLUSION: It was concluded that azithromycin loaded microneedle patches can be used to treat biofilms in the infected wounds.


Assuntos
Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Administração Cutânea , Animais , Antibacterianos/farmacocinética , Azitromicina/administração & dosagem , Azitromicina/farmacocinética , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Eritromicina/administração & dosagem , Eritromicina/farmacocinética , Escherichia coli/efeitos dos fármacos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Ratos , Salmonella enterica/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Pele/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Adesivo Transdérmico , Infecção dos Ferimentos/microbiologia
9.
AAPS PharmSciTech ; 22(8): 258, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697652

RESUMO

With the advancements in cutting-edge technologies and rapid development of medical sciences, patient-focused drug development (PFDD) through additive manufacturing (AM) processes is gathering more interest in the pharmaceutical area than ever. Hence, there is an urgent need for researchers to comprehensively understand the influence of three-dimensional design on the development of novel drug delivery systems (DDSs). For this research, fused deposition modeling (FDM) 3D printing was investigated, and phenytoin (PHT) was selected as the model drug. The primary purpose of the current investigation was to understand the influence of AM process on the pharmaceutical products' quality. A series of comparative studies, including morphology, solid-state analysis, and in vitro drug release studies between additive manufactured filaments (printlets) and extruded filaments, were conducted. The FDM-based AM showed adequate reproducibility by manufacturing printlets with consistent qualities; however, the model slicing orientation significantly affected the print qualities. The texture analysis studies showed that the mechanical properties (breaking behavior) of additive manufactured printlets were varied from the extruded filaments. Additionally, the higher printing temperature also influenced the solid state of the drug where the process assisted in PHT's amorphization in the printed products, which further affected their mechanical properties and in vitro drug release performances. The current investigation illustrated that the AM process would change the printed objects' macrostructure over the conventional products, and the printing temperature and slicing will significantly affect the printing process and product qualities.


Assuntos
Excipientes , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Humanos , Impressão Tridimensional , Reprodutibilidade dos Testes , Comprimidos , Temperatura
10.
Drug Dev Ind Pharm ; 46(9): 1385-1401, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715832

RESUMO

Three-dimensional (3D) printing has recently appeared as one of the most promising additive manufacturing techniques to fabricate 3D objects, with uses spanning from engineering prototyping to medicines and cell-laden models for biomedical applications. Regardless of the type and underlying theory, 3D printing techniques involve the deposition of materials such as thermoplastic polymers or hydrogel in sequential layers one onto another to produce a 3D object. 3D printing has recently gained momentum in developing various drug delivery systems for pharmaceutical applications which is reflected by the exponential rise in the number of published papers and patents in recent years. Whilst the future of 3D printing techniques is bright, various obstacles need to be overcome before it can be applied practically in commercial-scale production. This review article discusses current approaches of altering drug delivery when manufacturing 3D printed dosage forms that vary in their drug release profiles and characteristics. Such achievements correspond to developing and delivering patient-specific treatments. With each type of 3D printing application, there are great benefits, and these are highlighted, however, a critical discussion will underline the limitations and challenges associated with 3D printing.


Assuntos
Medicina de Precisão , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Humanos , Polímeros/química
11.
12.
Drug Dev Ind Pharm ; 43(6): 947-957, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28122459

RESUMO

The purpose of this study was to evaluate the performance of Neusilin® (NEU) a synthetic magnesium aluminometasilicate as an inorganic drug carrier co-processed with the hydrophilic surfactants Labrasol and Labrafil to develop Tranilast (TLT)-based solid dispersions using continuous melt extrusion (HME) processing. Twin-screw extrusion was optimized to develop various TLT/excipient/surfactant formulations followed by continuous capsule filling in the absence of any downstream equipment. Physicochemical characterization showed the existence of TLT in partially crystalline state in the porous network of inorganic NEU for all extruded formulations. Furthermore, in-line NIR studies revealed a possible intermolecular H-bonding formation between the drug and the carrier resulting in the increase of TLT dissolution rates. The capsules containing TLT-extruded solid dispersions showed enhanced dissolution rates and compared with the marketed Rizaben® product.


Assuntos
Excipientes/química , Antagonistas dos Receptores Histamínicos H1/química , ortoaminobenzoatos/química , Compostos de Alumínio , Cápsulas , Cristalização , Portadores de Fármacos , Composição de Medicamentos , Antagonistas dos Receptores Histamínicos H1/administração & dosagem , Cinética , Compostos de Magnésio , Tamanho da Partícula , Silicatos , Solubilidade , Espectroscopia de Luz Próxima ao Infravermelho , Tensoativos , Difração de Raios X , ortoaminobenzoatos/administração & dosagem
13.
AAPS PharmSciTech ; 18(5): 1428-1437, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27511111

RESUMO

This study elucidates the physical properties of sono-crystallised micro/nano-sized acetaminophen/paracetamol (PMOL) and monitors its possible transformation from polymorphic form I (monoclinic) to form II (orthorhombic). Hydrophilic Plasdone® S630 copovidone (S630), N-vinyl-2-pyrrolidone and vinyl acetate copolymer, and methacrylate-based cationic copolymer, Eudragit® EPO (EPO), were used as polymeric carriers to prepare drug/polymer binary mixtures. Commercially available PMOL was crystallised under ultra sound sonication to produce micro/nano-sized (0.2-10 microns) crystals in monoclinic form. Homogeneous binary blends of drug-polymer mixtures at various drug concentrations were obtained via a thorough mixing. The analysis conducted via the single X-ray crystallography determined the detailed structure of the crystallised PMOL in its monoclinic form. The solid state and the morphology analyses of the PMOL in the binary blends evaluated via differential scanning calorimetry (DSC), modulated temperature DSC (MTDSC), scanning electron microscopy (SEM) and hot stage microscopy (HSM) revealed the crystalline existence of the drug within the amorphous polymeric matrices. The application of temperature controlled X-ray diffraction (VTXRPD) to study the polymorphism of PMOL showed that the most stable form I (monoclinic) was altered to its less stable form II (orthorhombic) at high temperature (>112°C) in the binary blends regardless of the drug amount. Thus, VTXRD was used as a useful tool to monitor polymorphic transformations of crystalline drug (e.g. PMOL) to assess their thermal stability in terms of pharmaceutical product development and research.


Assuntos
Acetaminofen , Cristalização/métodos , Ácidos Polimetacrílicos , Povidona , Pirrolidinas , Compostos de Vinila , Acetaminofen/química , Acetaminofen/farmacocinética , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacocinética , Varredura Diferencial de Calorimetria/métodos , Cristalografia por Raios X/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Povidona/química , Povidona/farmacocinética , Pirrolidinas/química , Pirrolidinas/farmacocinética , Temperatura , Compostos de Vinila/química , Compostos de Vinila/farmacocinética , Difração de Raios X/métodos
14.
AAPS PharmSciTech ; 18(5): 1469-1474, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27834054

RESUMO

Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ∼170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.


Assuntos
Espironolactona , Ácidos Esteáricos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Nanopartículas/química , Tamanho da Partícula , Solubilidade , Espironolactona/química , Espironolactona/farmacologia , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacologia
15.
AAPS PharmSciTech ; 17(1): 191-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26689407

RESUMO

The aim of the study was to investigate the effect of novel polymer/lipid formulations on the dissolution rates of the water insoluble indomethacin (INM), co-processed by hot melt extrusion (HME). Formulations consisted of the hydrophilic hydroxypropyl methyl cellulose polymer (HPMCAS) and stearoyl macrogol-32 glycerides-Gelucire 50/13 (GLC) were processed with a twin screw extruder to produce solid dispersions. The extrudates characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and hot stage microscopy (HSM) indicated the presence of amorphous INM within the polymer/lipid matrices. In-line monitoring via near-infrared (NIR) spectroscopy revealed significant peak shifts indicating possible interactions and H-bonding formation between the drug and the polymer/lipid carriers. Furthermore, in vitro dissolution studies showed a synergistic effect of the polymer/lipid carrier with 2-h lag time in acidic media followed by enhanced INM dissolution rates at pH > 5.5.


Assuntos
Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Indometacina/química , Lipídeos/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Portadores de Fármacos/química , Gorduras/química , Glicerídeos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metilcelulose/análogos & derivados , Metilcelulose/química , Óleos/química , Polietilenoglicóis/química , Solubilidade , Difração de Raios X/métodos
16.
Mol Pharm ; 12(4): 1040-9, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25734898

RESUMO

In this study molecular modeling is introduced as a novel approach for the development of pharmaceutical solid dispersions. A computational model based on quantum mechanical (QM) calculations was used to predict the miscibility of various drugs in various polymers by predicting the binding strength between the drug and dimeric form of the polymer. The drug/polymer miscibility was also estimated by using traditional approaches such as Van Krevelen/Hoftyzer and Bagley solubility parameters or Flory-Huggins interaction parameter in comparison to the molecular modeling approach. The molecular modeling studies predicted successfully the drug-polymer binding energies and the preferable site of interaction between the functional groups. The drug-polymer miscibility and the physical state of bulk materials, physical mixtures, and solid dispersions were determined by thermal analysis (DSC/MTDSC) and X-ray diffraction. The produced solid dispersions were analyzed by X-ray photoelectron spectroscopy (XPS), which confirmed not only the exact type of the intermolecular interactions between the drug-polymer functional groups but also the binding strength by estimating the N coefficient values. The findings demonstrate that QM-based molecular modeling is a powerful tool to predict the strength and type of intermolecular interactions in a range of drug/polymeric systems for the development of solid dispersions.


Assuntos
Química Farmacêutica/métodos , Modelos Moleculares , Varredura Diferencial de Calorimetria , Cristalização , Dimerização , Composição de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Temperatura Alta , Modelos Químicos , Preparações Farmacêuticas/química , Espectroscopia Fotoeletrônica , Polímeros/química , Ligação Proteica , Teoria Quântica , Solubilidade , Termodinâmica , Difração de Raios X
17.
Drug Dev Ind Pharm ; 40(2): 145-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23763436

RESUMO

The majority of active pharmaceutical ingredients (APIs) found in oral dosage forms have a bitter taste. Masking the unpleasant taste of bitter, APIs is a major challenge in the development of such oral dosage forms. Taste assessment is an important quality-control parameter for evaluating taste-masked formulations of any new molecular entity. Hot-melt extrusion (HME) techniques, have very recently, been accepted from an industrial compliance viewpoint in relation to both manufacturing operations and development of pharmaceuticals. HME achieves taste masking of bitter APIs via various mechanisms such as the formation of solid dispersions and inter-molecular interactions and this has led to its wide-spread use in pharmaceutical formulation research. In this article, the uses of various taste evaluation methods and HME as continuous processing techniques for taste masking of bitter APIs used for the oral delivery of drugs are reviewed.


Assuntos
Química Farmacêutica/métodos , Temperatura Alta , Preparações Farmacêuticas/química , Paladar/efeitos dos fármacos , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Preparações Farmacêuticas/administração & dosagem , Paladar/fisiologia
18.
Drug Discov Today ; 29(1): 103823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949427

RESUMO

Three-dimensional (3D) printing is a promising approach for the stabilization and delivery of non-living biologics. This versatile tool builds complex structures and customized resolutions, and has significant potential in various industries, especially pharmaceutics and biopharmaceutics. Biologics have become increasingly prevalent in the field of medicine due to their diverse applications and benefits. Stability is the main attribute that must be achieved during the development of biologic formulations. 3D printing could help to stabilize biologics by entrapment, support binding, or crosslinking. Furthermore, gene fragments could be transited into cells during co-printing, when the pores on the membrane are enlarged. This review provides: (i) an introduction to 3D printing technologies and biologics, covering genetic elements, therapeutic proteins, antibodies, and bacteriophages; (ii) an overview of the applications of 3D printing of biologics, including regenerative medicine, gene therapy, and personalized treatments; (iii) information on how 3D printing could help to stabilize and deliver biologics; and (iv) discussion on regulations, challenges, and future directions, including microneedle vaccines, novel 3D printing technologies and artificial-intelligence-facilitated research and product development. Overall, the 3D printing of biologics holds great promise for enhancing human health by providing extended longevity and enhanced quality of life, making it an exciting area in the rapidly evolving field of biomedicine.


Assuntos
Produtos Biológicos , Qualidade de Vida , Humanos , Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Medicina de Precisão
19.
Int J Pharm ; 649: 123652, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38040397

RESUMO

Recently, binder jet printed modular tablets were loaded with three anti-viral drugs via Drop on Demand (DoD) technology where drug solutions prepared in ethanol showed faster release than those prepared in water. During printing, water is used as a binding agent, whereas ethanol is added to maintain the porous structure of the tablets. Thus, the hypothesis is that the porosity would be controlled by manipulating the percentage of water and ethanol. In this study, Rhodamine 6G (R6G) was selected as a model drug due to its high solubility in water and ethanol, visualization function as a fluorescent dye, and potential therapeutic effects for cancer treatment. Approximately, 10 mg/ml R6G solutions were prepared with five different water-ethanol ratios (0-100, 75-25, 50-50, 75-25, 100-0). The ink solutions were printed onto blank binder jet 3D-printed tablets containing calcium sulphate hemihydrate using DoD technology. The tablets were dried at room temperature and then characterized using SEM-EDX, fluorescent microscope, TGA, XRD, FTIR, and DSC as well as in vitro release studies to investigate the impact of water-ethanol ratio on the release profile of R6G. Results indicated that the solution with higher ethanol ratio penetrated the tablets faster than the lower ethanol ratio, while the solution prepared with pure water was first accumulated onto the tablets' surface and then absorbed by the tablets. Moreover, tablets with more water content gained more weight and thickness. The EDX analysis and fluorescent microscope showed the uniform surface distribution of the drug. The SEM images revealed the difference in the tablet surface among the five formulations. Furthermore, the TGA data presents a notable increase in water loss, with XRD analysis suggesting the formation of gypsum in tablets containing elevated water content. The release study exhibited that the fastest release was from WE0-100, whereas the release rate decreases as the content of water increases. The WE0-100 releases more than 40 % drug within the first hour which is almost twice as high of the WE100-0 formulation. This DoD technology could distribute drugs onto the tablet's surface uniformly. The calcium sulfate would transform from hemihydrate to dihydrate form in the presence of water and therefore, those tablets treated with higher water content led to slower release. In conclusion, this study underscores the substantial impact of the water-ethanol ratio on drug release from binder jet printed tablets and highlights the potential of DoD technology for uniform drug distribution and controlled release.


Assuntos
Sulfato de Cálcio , Tecnologia Farmacêutica , Solventes , Tecnologia Farmacêutica/métodos , Liberação Controlada de Fármacos , Água , Comprimidos/química , Impressão Tridimensional , Etanol
20.
Int J Pharm ; 659: 124277, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38802027

RESUMO

The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained ß-galactosidase (ß-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of ß-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the ß-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in ß-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The ß-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The ß-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the ß-gal release from the constructs was delayed to 3 h by printing a backing layer of ß-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the ß-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.


Assuntos
Tinta , Poloxâmero , Polietilenoglicóis , Impressão Tridimensional , Trealose , beta-Galactosidase , beta-Galactosidase/química , Poloxâmero/química , Polietilenoglicóis/química , Trealose/química , Viscosidade , Excipientes/química , Sistemas de Liberação de Medicamentos/métodos , Manitol/química , Tecnologia Farmacêutica/métodos , Fosfinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA