RESUMO
miRNAs are 22 nucleotides long and belong to a class of noncoding RNAs that plays an important role in regulating gene expression at a post-transcriptional level. Studies show aberrant levels of miRNAs to be associated with profibrotic processes in idiopathic pulmonary fibrosis (IPF). However, most of these studies used whole IPF tissue or in vitro monocultures in which fibrosis was artificially induced. The current study used laser microdissection to collect fibroblastic foci (FF), the key pathologic lesion in IPF, isolated miRNAs, and compared their expression levels with those found in whole IPF lung tissue and/or in vitro cultured fibroblast from IPF or normal lungs. Sequencing libraries were generated, and data generated were bioinformatically analyzed. A total of 18 miRNAs were significantly overexpressed in FF tissue when compared with whole IPF tissue. Of those, 15 were unique to FF. Comparison of FF with cultured IPF fibroblasts also revealed differences in miRNA composition that impacted several signaling pathways. The miRNA composition of FF is both overlapping and distinct from that of whole IPF tissue or cultured IPF fibroblasts and highlights the importance of characterizing FF biology as a phenotypically and functionally discrete tissue microenvironment.
Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismoRESUMO
Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent-like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length-independent telomere damage in cardiomyocytes activates the classical senescence-inducing pathways, p21CIP and p16INK4a, and results in a non-canonical senescence-associated secretory phenotype, which is pro-fibrotic and pro-hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age-related myocardial dysfunction and in the wider setting to ageing in post-mitotic tissues.
Assuntos
Cardiomegalia/patologia , Senescência Celular , Dano ao DNA , Fibrose/patologia , Mitose , Miócitos Cardíacos/patologia , Encurtamento do Telômero , Envelhecimento , Animais , Cardiomegalia/etiologia , Feminino , Fibrose/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monoaminoxidase/fisiologia , Miócitos Cardíacos/metabolismo , Fenótipo , RNA/fisiologia , Ratos Sprague-Dawley , Telomerase/fisiologiaRESUMO
BACKGROUND & AIMS: We recently showed that alcoholic hepatitis (AH) is characterized by dedifferentiation of hepatocytes and loss of mature functions. Glucose metabolism is tightly regulated in healthy hepatocytes. We hypothesize that AH may lead to metabolic reprogramming of the liver, including dysregulation of glucose metabolism. METHODS: We performed integrated metabolomic and transcriptomic analyses of liver tissue from patients with AH or alcoholic cirrhosis or normal liver tissue from hepatic resection. Focused analyses of chromatin immunoprecipitation coupled to DNA sequencing was performed. Functional in vitro studies were performed in primary rat and human hepatocytes and HepG2 cells. RESULTS: Patients with AH exhibited specific changes in the levels of intermediates of glycolysis/gluconeogenesis, the tricarboxylic acid cycle, and monosaccharide and disaccharide metabolism. Integrated analysis of the transcriptome and metabolome showed the used of alternate energetic pathways, metabolite sinks and bottlenecks, and dysregulated glucose storage in patients with AH. Among genes involved in glucose metabolism, hexokinase domain containing 1 (HKDC1) was identified as the most up-regulated kinase in patients with AH. Histone active promoter and enhancer markers were increased in the HKDC1 genomic region. High HKDC1 levels were associated with the development of acute kidney injury and decreased survival. Increased HKDC1 activity contributed to the accumulation of glucose-6-P and glycogen in primary rat hepatocytes. CONCLUSIONS: Altered metabolite levels and messenger RNA expression of metabolic enzymes suggest the existence of extensive reprogramming of glucose metabolism in AH. Increased HKDC1 expression may contribute to dysregulated glucose metabolism and represents a novel biomarker and therapeutic target for AH.
Assuntos
Desdiferenciação Celular , Metabolismo Energético , Perfilação da Expressão Gênica , Glucose/metabolismo , Hepatite Alcoólica/enzimologia , Hepatócitos/enzimologia , Hexoquinase/metabolismo , Fígado/enzimologia , Metabolômica , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Adaptação Fisiológica , Animais , Europa (Continente) , Feminino , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Células Hep G2 , Hepatite Alcoólica/genética , Hepatite Alcoólica/patologia , Hepatócitos/patologia , Hexoquinase/genética , Humanos , Fígado/patologia , Masculino , Metaboloma , Pessoa de Meia-Idade , Ratos Wistar , Transcriptoma , Estados UnidosRESUMO
BACKGROUND/OBJECTIVES: Obesity increases colorectal cancer (CRC) risk. However, the effects of weight loss on CRC risk are unclear. Epigenetic mechanisms involving microRNAs that lead to dysregulated gene expression may mediate the effects of obesity and weight loss on CRC risk. We examined the effects of obesity and weight loss following Roux-en-Y gastric bypass (RYGB) on microRNA expression in the human rectal mucosa. SUBJECTS/METHODS: We collected rectal mucosal biopsies from obese patients (n = 22) listed for RYGB and age- and sex-matched healthy non-obese Controls (n = 20), at baseline and six months post-surgery. We quantified microRNA expression in rectal mucosal biopsies using Next Generation Sequencing and bioinformatics analysis to investigate the likely functional consequences of these epigenetic changes. RESULTS: Compared with non-obese individuals, obese individuals showed differential expression of 112 microRNAs (p < 0.05). At six-months post-RYGB, when mean body mass had fallen by 27 kg, 60 microRNAs were differentially expressed, compared with baseline (p < 0.05). The expression of 36 microRNAs differed significantly between both i) obese and non-obese individuals and ii) obese individuals pre- and post-RYGB. Quantitative polymerase chain reaction (qPCR) demonstrated that expression of miR-31 and miR-215 was significantly (p < 0.05) higher, 143-fold and 15-fold respectively, in obese than in non-obese individuals. Weight loss, following RYGB, reduced expression of miR-31 and miR-215 to levels comparable with Controls. These differentially expressed microRNAs are implicated in pathways linked with inflammation, obesity and cancer. CONCLUSION: Our findings show, for the first time, that obesity is associated with dysregulated microRNA expression in the human rectal mucosa. Further, surgically-induced weight loss may normalise microRNA expression in this tissue.
Assuntos
Derivação Gástrica/efeitos adversos , MicroRNAs/análise , Mucosa/metabolismo , Obesidade/metabolismo , Adulto , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Inglaterra/epidemiologia , Feminino , Derivação Gástrica/métodos , Derivação Gástrica/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa/fisiopatologia , Obesidade/epidemiologia , Obesidade/fisiopatologia , Reto/metabolismo , Reto/fisiopatologia , Estatísticas não ParamétricasRESUMO
BACKGROUND AND AIMS: NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD. APPROACH AND RESULTS: We analyzed the formation and degradation of LD in vitro (fibroblasts and primary mouse hepatocytes), in vivo and ex vivo (mouse and human liver slices) and focused on the role of the autophagy master regulator mammalian target of rapamycin complex (mTORC) 1 and the LD coating protein perilipin (Plin) 3 in these processes. We show that the autophagy machinery is recruited to the LD on hepatic overload of oleic acid in all experimental settings. This led to activation of lipophagy, a process that was abolished by Plin3 knockdown using RNA interference. Furthermore, Plin3 directly interacted with the autophagy proteins focal adhesion interaction protein 200 KDa and autophagy-related 16L, suggesting that Plin3 functions as a docking protein or is involved in autophagosome formation to activate lipophagy. Finally, we show that mTORC1 phosphorylated Plin3 to promote LD degradation. CONCLUSIONS: These results reveal that mTORC1 regulates liver lipophagy through a mechanism dependent on Plin3 phosphorylation. We propose that stimulating this pathway can enhance lipophagy in hepatocytes to help protect the liver from lipid-mediated toxicity, thus offering a therapeutic strategy in NAFLD.
Assuntos
Autofagia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Perilipina-3/metabolismo , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. DESIGN: G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-ß1 (TGFß1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. RESULTS: G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGFß1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGFß1 fibrogenic responses in hHSC. TGFß1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. CONCLUSIONS: Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis.
Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Células Estreladas do Fígado/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Cirrose Hepática/etiologia , Animais , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1/genética , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: Serum transferrin levels represent an independent predictor of mortality in patients with liver failure. Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte functions. The aim of this study was to explore whether serum transferrin reflects HNF4α activity. METHODS: Factors regulating transferrin expression in alcoholic hepatitis (AH) were assessed via transcriptomic/methylomic analysis as well as chromatin immunoprecipitation coupled to DNA sequencing. The findings were corroborated in primary hepatocytes. Serum and liver samples from 40 patients with advanced liver disease of multiple etiologies were also studied. RESULTS: In patients with advanced liver disease, serum transferrin levels correlated with hepatic transferrin expression (r = 0.51, p = 0.01). Immunohistochemical and biochemical tests confirmed reduced HNF4α and transferrin protein levels in individuals with cirrhosis. In AH, hepatic gene-gene correlation analysis in liver transcriptome revealed an enrichment of HNF4α signature in transferrin-correlated transcriptome while transforming growth factor beta 1 (TGFß1), tumor necrosis factor α (TNFα), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) negatively associated with transferrin signature. A key regulatory region in transferrin promoter was hypermethylated in patients with AH. In primary hepatocytes, treatment with TGFß1 or the HNF4α inhibitor BI6015 suppressed transferrin production, while exposure to TNFα, IL-1ß, and IL-6 had no effect. The correlation between hepatic HNF4A and transferrin mRNA levels was also seen in advanced liver disease. CONCLUSIONS: Serum transferrin levels constitute a prognostic and mechanistic biomarker. Consequently, they may serve as a surrogate of impaired hepatic HNF4α signaling and liver failure.
Assuntos
Fatores Nucleares de Hepatócito/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Hepatócitos/patologia , Humanos , Cirrose Hepática/metabolismo , Hepatopatias/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismoRESUMO
BACKGROUND AND AIMS: In nonalcoholic fatty liver disease (NAFLD), fibrosis is the most important factor contributing to NAFLD-associated morbidity and mortality. Prevention of progression and reduction in fibrosis are the main aims of treatment. Even in early stages of NAFLD, hepatic and systemic hyperammonemia is evident. This is due to reduced urea synthesis; and as ammonia is known to activate hepatic stellate cells, we hypothesized that ammonia may be involved in the progression of fibrosis in NAFLD. APPROACH AND RESULTS: In a high-fat, high-cholesterol diet-induced rodent model of NAFLD, we observed a progressive stepwise reduction in the expression and activity of urea cycle enzymes resulting in hyperammonemia, evidence of hepatic stellate cell activation, and progressive fibrosis. In primary, cultured hepatocytes and precision-cut liver slices we demonstrated increased gene expression of profibrogenic markers after lipid and/or ammonia exposure. Lowering of ammonia with the ammonia scavenger ornithine phenylacetate prevented hepatocyte cell death and significantly reduced the development of fibrosis both in vitro in the liver slices and in vivo in a rodent model. The prevention of fibrosis in the rodent model was associated with restoration of urea cycle enzyme activity and function, reduced hepatic ammonia, and markers of inflammation. CONCLUSIONS: The results of this study suggest that hepatic steatosis results in hyperammonemia, which is associated with progression of hepatic fibrosis. Reduction of ammonia levels prevented progression of fibrosis, providing a potential treatment for NAFLD.
Assuntos
Amônia/metabolismo , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley , Distúrbios Congênitos do Ciclo da Ureia/etiologiaRESUMO
BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Acetaminofen , Animais , Tetracloreto de Carbono , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Reparo do DNA , Replicação do DNA , Células Estreladas do Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Serina , Transdução de SinaisRESUMO
Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFß1) and platelet-derived growth factor (PDGFßß) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFß1/PDGFßß stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFß1/PDGFßß-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.
Assuntos
Reatores Biológicos , Regulação da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/patologia , Técnicas de Cultura de Tecidos/métodos , Animais , Biópsia por Agulha , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Fatores de TempoRESUMO
OBJECTIVES: NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS: Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS: cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION: cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.
Assuntos
Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Escleroderma Sistêmico/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibrose , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Escleroderma Sistêmico/patologiaRESUMO
OBJECTIVE: Liver injury impacts hepatic inflammation in part via Toll-like receptor (TLR) signalling. Triggering receptor expressed on myeloid cells 2 (TREM-2) modulates TLR4-mediated inflammation in bone marrow (BM)-derived macrophages but its function in liver injury is unknown. Here we hypothesised that the anti-inflammatory effects of TREM-2 on TLR signalling may limit hepatic injury. DESIGN: TREM-2 expression was analysed in livers of humans with various forms of liver injury compared with control individuals. Acute and chronic liver injury models were performed in wild type and Trem-2-/- mice. Primary liver cells from both genotypes of mice were isolated for in vitro experiments. RESULTS: TREM-2 was expressed on non-parenchymal hepatic cells and induced during liver injury in mice and man. Mice lacking TREM-2 exhibited heightened liver damage and inflammation during acute and repetitive carbon tetrachloride and acetaminophen (APAP) intoxication, the latter of which TREM-2 deficiency was remarkably associated with worsened survival. Liver damage in Trem-2-/- mice following chronic injury and APAP challenge was associated with elevated hepatic lipid peroxidation and macrophage content. BM transplantation experiments and cellular reactive oxygen species assays revealed effects of TREM-2 in the context of chronic injury depended on both immune and resident TREM-2 expression. Consistent with effects of TREM-2 on inflammation-associated injury, primary hepatic macrophages and hepatic stellate cells lacking TREM-2 exhibited augmented TLR4-driven proinflammatory responses. CONCLUSION: Our data indicate that by acting as a natural brake on inflammation during hepatocellular injury, TREM-2 is a critical regulator of diverse types of hepatotoxic injury.
Assuntos
Cirrose Hepática/metabolismo , Fígado/metabolismo , Glicoproteínas de Membrana/fisiologia , Receptores Imunológicos/fisiologia , Acetaminofen , Idoso , Animais , Tetracloreto de Carbono , Estudos de Casos e Controles , Feminino , Células-Tronco Hematopoéticas/metabolismo , Hepatócitos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Células de Kupffer/metabolismo , Peroxidação de Lipídeos/fisiologia , Cirrose Hepática/etiologia , Cirrose Hepática/imunologia , Cirrose Hepática Experimental/imunologia , Cirrose Hepática Experimental/metabolismo , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Knockout , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptor 4 Toll-Like/fisiologia , Regulação para Cima/fisiologiaRESUMO
With the growing number of novel therapeutic approaches for liver diseases, significant research efforts have been devoted to the development of liquid biopsy tools for precision medicine. This can be defined as non-invasive reliable biomarkers that can supplement and eventually replace the invasive liver biopsy for diagnosis, disease stratification and monitoring of response to therapeutic interventions. Similarly, detection of liver cancer at an earlier stage of the disease, potentially susceptible to curative resection, can be critical to improve patient survival. Circulating extracellular vesicles, nucleic acids (DNA and RNA) and tumour cells have emerged as attractive liquid biopsy candidates because they fulfil many of the key characteristics of an ideal biomarker. In this review, we summarise the currently available information regarding these promising and potential transformative tools, as well as the issues still needed to be addressed for adopting various liquid biopsy approaches into clinical practice. These studies may pave the way to the development of a new generation of reliable, mechanism-based disease biomarkers.
Assuntos
Hepatopatias/diagnóstico , Biomarcadores Tumorais/metabolismo , Ácidos Nucleicos Livres/sangue , Vesículas Extracelulares/patologia , Humanos , Biópsia Líquida/métodos , Hepatopatias/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Células Neoplásicas Circulantes/patologia , Medicina de Precisão/métodosRESUMO
The progression of fibrosis in chronic liver disease is dependent upon hepatic stellate cells (HSCs) transdifferentiating to a myofibroblast-like phenotype. This pivotal process is controlled by enzymes that regulate histone methylation and chromatin structure, which may be targets for developing anti-fibrotics. There is limited pre-clinical experimental support for the potential to therapeutically manipulate epigenetic regulators in fibrosis. In order to learn if epigenetic treatment can halt the progression of pre-established liver fibrosis, we treated mice with the histone methyltransferase inhibitor 3-deazaneplanocin A (DZNep) in a naked form or by selectively targeting HSC-derived myofibroblasts via an antibody-liposome-DZNep targeting vehicle. We discovered that DZNep treatment inhibited multiple histone methylation modifications, indicative of a broader specificity than previously reported. This broad epigenetic repression was associated with the suppression of fibrosis progression as assessed both histologically and biochemically. The anti-fibrotic effect of DZNep was reproduced when the drug was selectively targeted to HSC-derived myofibroblasts. Therefore, the in vivo modulation of HSC histone methylation is sufficient to halt progression of fibrosis in the context of continuous liver damage. This discovery and our novel HSC-targeting vehicle, which avoids the unwanted effects of epigenetic drugs on parenchymal liver cells, represents an important proof-of-concept for epigenetic treatment of liver fibrosis.
Assuntos
Adenosina/análogos & derivados , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Animais , Biomarcadores , Tetracloreto de Carbono/efeitos adversos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Masculino , Camundongos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismoRESUMO
OBJECTIVE: Liver biopsy is currently the most reliable way of evaluating liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Its inherent risks limit its widespread use. Differential liver DNA methylation of peroxisome proliferator-activated receptor gamma (PPARγ) gene promoter has recently been shown to stratify patients in terms of fibrosis severity but requires access to liver tissue. The aim of this study was to assess whether DNA methylation of circulating DNA could be detected in human plasma and potentially used to stratify liver fibrosis severity in patients with NAFLD. DESIGN: Patients with biopsy-proven NAFLD and age-matched controls were recruited from the liver and gastroenterology clinics at the Newcastle upon Tyne Hospitals NHS Foundation Trust. Plasma cell-free circulating DNA methylation of PPARγ was quantitatively assessed by pyrosequencing. Liver DNA methylation was quantitatively assessed by pyrosequencing NAFLD explant tissue, subjected to laser capture microdissection (LCM). Patients with alcoholic liver disease (ALD) were also subjected to plasma DNA and LCM pyrosequencing. RESULTS: 26 patients with biopsy-proven NAFLD were included. Quantitative plasma DNA methylation of PPARγ stratified patients into mild (Kleiner 1-2) and severe (Kleiner 3-4) fibrosis (CpG1: 63% vs 86%, p<0.05; CpG2: 51% vs 65% p>0.05). Hypermethylation at the PPARγ promoter of plasma DNA correlated with changes in hepatocellular rather than myofibroblast DNA methylation. Similar results were demonstrated in patients with ALD cirrhosis. CONCLUSIONS: Differential DNA methylation at the PPARγ promoter can be detected within the pool of cell-free DNA of human plasma. With further validation, plasma DNA methylation of PPARγ could potentially be used to non-invasively stratify liver fibrosis severity in patients with NAFLD. Plasma DNA methylation signatures reflect the molecular pathology associated with fibrotic liver disease.
Assuntos
Metilação de DNA , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , PPAR gama/genética , Índice de Gravidade de Doença , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/metabolismoRESUMO
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
RESUMO
BACKGROUND & AIMS: DNA methylation (5-mC) is an epigenetic mark that is an established regulator of transcriptional repression with an important role in liver fibrosis. Currently, there is very little knowledge available as to how DNA methylation controls the phenotype of hepatic stellate cell (HSC), the key cell type responsible for onset and progression of liver fibrosis. Moreover, recently discovered DNA hydroxymethylation (5-hmC) is involved in transcriptional activation and its patterns are often altered in human diseases. The aim of this study is to investigate the role of DNA methylation/hydroxymethylation in liver fibrosis. METHODS: Levels of 5-mC and 5-hmC were assessed by slot blot in a range of animal liver fibrosis models and human liver diseases. Expression levels of TET and DNMT enzymes were measured by qRT-PCR and Western blotting. Reduced representation bisulfite sequencing (RRBS) method was used to examine 5-mC and 5-hmC patterns in quiescent and in vivo activated rat HSC. RESULTS: We demonstrate global alteration in 5-mC and 5-hmC and their regulatory enzymes that accompany liver fibrosis and HSC transdifferentiation. Using RRBS, we show exact genomic positions of changed methylation patterns in quiescent and in vivo activated rat HSC. In addition, we demonstrate that reduction in DNMT3a expression leads to attenuation of pro-fibrogenic phenotype in activated HSC. CONCLUSIONS: Our data suggest that DNA 5-mC/5-hmC is a crucial step in HSC activation and therefore fibrogenesis. Changes in DNA methylation during HSC activation may bring new insights into the molecular events underpinning fibrogenesis and may provide biomarkers for disease progression as well as potential new drug targets.
Assuntos
Transdiferenciação Celular , Metilação de DNA , Células Estreladas do Fígado/citologia , Cirrose Hepática/etiologia , Animais , DNA (Citosina-5-)-Metiltransferases/fisiologia , DNA Metiltransferase 3A , Células Estreladas do Fígado/fisiologia , Humanos , Ratos , Ratos Sprague-Dawley , DNA Metiltransferase 3BRESUMO
Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneous candidiasis (CMC). In patients with autosomal dominant CMC, we and others previously reported defective Th17 responses and underlying gain-of-function (GOF) STAT1 mutations, but how this affects STAT3 function leading to decreased IL-17 is unclear. We also assessed how GOF-STAT1 mutations affect STAT3 activation, DNA binding, gene expression, cytokine production, and epigenetic modifications. We excluded impaired STAT3 phosphorylation, nuclear translocation, and sequestration of STAT3 into STAT1/STAT3 heterodimers and confirm significantly reduced transcription of STAT3-inducible genes (RORC/IL-17/IL-22/IL-10/c-Fos/SOCS3/c-Myc) as likely underlying mechanism. STAT binding to the high affinity sis-inducible element was intact but binding to an endogenous STAT3 DNA target was impaired. Reduced STAT3-dependent gene transcription was reversed by inhibiting STAT1 activation with fludarabine or enhancing histone, but not STAT1 or STAT3 acetylation with histone deacetylase (HDAC) inhibitors trichostatin A or ITF2357. Silencing HDAC1, HDAC2, and HDAC3 indicated a role for HDAC1 and 2. Reduced STAT3-dependent gene transcription underlies low Th-17 responses in GOF-STAT1 CMC, which can be reversed by inhibiting acetylation, offering novel targets for future therapies.
Assuntos
Candidíase Mucocutânea Crônica/imunologia , Regulação da Expressão Gênica/imunologia , Mutação , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Transcrição Gênica/imunologia , Acetilação/efeitos dos fármacos , Candidíase Mucocutânea Crônica/genética , Candidíase Mucocutânea Crônica/patologia , Citocinas/genética , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Células Th17/imunologia , Células Th17/patologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genéticaRESUMO
BACKGROUND & AIMS: Alcohol is a primary cause of liver disease and an important co-morbidity factor in other causes of liver disease. A common feature of progressive liver disease is fibrosis, which results from the net deposition of fibril-forming extracellular matrix (ECM). The hepatic stellate cell (HSC) is widely considered to be the major cellular source of fibrotic ECM. We determined if HSCs are responsive to direct stimulation by alcohol. METHODS: HSCs undergoing transdifferentiation were incubated with ethanol and expression of fibrogenic genes and epigenetic regulators was measured. Mechanisms responsible for recorded changes were investigated using ChIP-Seq and bioinformatics analysis. Ethanol induced changes were confirmed using HSCs isolated from a mouse alcohol model and from ALD patient's liver and through precision cut liver slices. RESULTS: HSCs responded to ethanol exposure by increasing profibrogenic and ECM gene expression including elastin. Ethanol induced an altered expression of multiple epigenetic regulators, indicative of a potential to modulate chromatin structure during HSC transdifferentiation. MLL1, a histone 3 lysine 4 (H3K4) methyltransferase, was induced by ethanol and recruited to the elastin gene promoter where it was associated with enriched H3K4me3, a mark of active chromatin. Chromatin immunoprecipitation sequencing (ChIPseq) revealed that ethanol has broad effects on the HSC epigenome and identified 41 gene loci at which both MML1 and its H3K4me3 mark were enriched in response to ethanol. CONCLUSIONS: Ethanol directly influences HSC transdifferentiation by stimulating global changes in chromatin structure, resulting in the increased expression of ECM proteins. The ability of alcohol to remodel the epigenome during HSC transdifferentiation provides mechanisms for it to act as a co-morbidity factor in liver disease.
Assuntos
DNA/genética , Epigênese Genética , Etanol/efeitos adversos , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Alcoólica/genética , Animais , Transdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/biossíntese , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Immunoblotting , Imuno-Histoquímica , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Masculino , Camundongos , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND & AIMS: Neutrophils are important immune effectors required for sterile and non-sterile inflammatory responses. However, neutrophils are associated with pathology in drug-induced liver injury, acute alcoholic liver disease, and ischemia-reperfusion injury. An understanding of the complex mechanisms that control neutrophil recruitment to the injured liver is desirable for developing strategies aimed at limiting neutrophil-mediated cellular damage. METHODS: Wt, tlr2(-/-), tlr4(-/-), and s100a9(-/-) mice were administered CCl4 either acutely (8, 24, 48, or 72 h) or chronically (8 weeks) and livers investigated by histological (IHC for neutrophils, fibrogenesis, proliferation, and chemotactic proteins) or molecular approaches (qRT-PCR for neutrophil chemoattractant chemokines and cytokines as well as pro-fibrogenic genes). RESULTS: Mice lacking TLR2 or S100A9 failed to recruit neutrophils to the injured liver and had a defective hepatic induction of the neutrophil chemokine CXCL-2. Hierarchy between TLR2 and S100A9 proved to be complex. While induction of S100A9 was dependent on TLR2 in isolated neutrophils, there was a more complicated two-way signalling cross-talk between TLR2 and S100A9 in whole liver. However, wound-healing and regenerative responses of the liver were unaffected in these genetic backgrounds as well as in wild type mice, in which neutrophils were depleted by infusion of Ly-6G antibody. CONCLUSIONS: We have identified TLR2 and S100A8/S100A9 as key regulators of hepatic CXCL-2 expression and neutrophil recruitment. This novel TLR2-S100A9-CXCL-2 pathway may be of use in development of new strategies for selectively manipulating neutrophils in liver disease without impairing normal wound healing and regenerative responses.