Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Oncol ; 36(2): 22, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30671681

RESUMO

The original version of this article unfortunately contained a mistake in the text of the entire article. The word "IL-39" should read as "meteorin-like protein". This has been corrected with this correction.

2.
Med Oncol ; 36(1): 12, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30506430

RESUMO

Pancreatic cancer is the most lethal digestive cancer and the fourth leading cause of cancer death in the US. IL-39, a heterodimer of p19 and EBI3, is a newly found cytokine and its role in the pathogenesis of neoplasia has not been studied yet. This study was designed to investigate the direct role of IL-39 in the growth of pancreatic cancer. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the direct effects of IL-39 on cell survival, proliferation and apoptosis of the widely studied pancreatic cancer cell line MiaPaCa-2. We further investigated the possible molecular mechanisms by using RT-PCR and IHC. The percentage of colonies of pancreatic cancer cells increased significantly in the presence of IL-39. This was paralleled with the increase in the OD value of cancer cells in the presence of IL-39. Interestingly, the relative caspase-3 activity in cancer cells decreased significantly in the presence of IL-39. Furthermore, the pro-tumor effect of IL-39 on pancreatic cancer cells correlated with decreased anti-proliferative molecule p21.The anti-apoptotic effect of IL-39 correlated with decreased pro-apoptotic molecule TRAILR1. These results suggest that IL-39 favors growth of pancreatic cancer by promoting growth and inhibiting apoptosis of cancer cells. This suggests that IL-39 acts as a friend to pancreatic cancer. Thus, inhibition of effect of IL-39 on cells might be a promising strategy to treat pancreatic cancer.


Assuntos
Interleucinas/biossíntese , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Apoptose/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Zebrafish ; 13(4): 272-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26982811

RESUMO

During retinal development, a variety of different types of neurons are produced. Understanding how each of these types of retinal nerve cells is generated is important from a developmental biology perspective. It is equally important if one is interested in how to regenerate cells after an injury or a disease. To gain more insight into how retinal neurons develop in the zebrafish, we performed single-cell mRNA profiling and in situ hybridizations (ISHs) on retinal sections and whole-mount zebrafish. Through the series of ISHs, designed and performed solely by undergraduate students in the laboratory, we were able to retrospectively identify our single-cell mRNA profiles as most likely coming from developing amacrine cells. Further analysis of these profiles will reveal genes that can be mutated using genome editing techniques. Together these studies increase our knowledge of the genes driving development of different cell types in the zebrafish retina.


Assuntos
Células Amácrinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/metabolismo , Peixe-Zebra/genética , Células Amácrinas/citologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Perfilação da Expressão Gênica , Retina/metabolismo , Células Ganglionares da Retina/citologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA