Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447082

RESUMO

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional
2.
Cell ; 150(1): 165-78, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22770218

RESUMO

Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b(+)Gr1(+) myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. Although chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α via NF-kB heightens the CXCL1/2 expression in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.


Assuntos
Neoplasias da Mama/patologia , Carcinoma/patologia , Quimiocina CXCL1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Metástase Neoplásica , Comunicação Parácrina , Animais , Neoplasias da Mama/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Carcinoma/metabolismo , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Metástase Linfática , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Transplante de Neoplasias , Transplante Heterólogo
3.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968122

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Assuntos
Análise de Célula Única , Masculino , Humanos , Análise de Célula Única/métodos , Animais , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Antígenos de Superfície/metabolismo , Antígenos de Superfície/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
4.
Cell ; 147(7): 1511-24, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196728

RESUMO

Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-ß signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1γ, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.


Assuntos
Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Proteínas Smad/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteína Goosecoid/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência
5.
Cell ; 139(4): 757-69, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914168

RESUMO

TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas Smad/genética , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Inibição de Contato , Embrião de Mamíferos/citologia , Humanos , Camundongos , Tamanho do Órgão , Fosfoproteínas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas Smad/química , Proteína Smad1/genética , Proteínas de Sinalização YAP
6.
Blood ; 137(15): 2057-2069, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33067607

RESUMO

Cancer and normal cells use multiple antiapoptotic BCL2 proteins to prevent cell death. Therapeutic targeting of multiple BCL2 family proteins enhances tumor killing but is also associated with increased systemic toxicity. Here, we demonstrate that the dual targeting of MCL1 and BCL2 proteins using the small molecules S63845 and venetoclax induces durable remissions in mice that harbor human diffuse large B-cell lymphoma (DLBCL) tumors but is accompanied by hematologic toxicity and weight loss. To mitigate these toxicities, we encapsulated S63845 or venetoclax into nanoparticles that target P-selectin, which is enriched in tumor endothelial cells. In vivo and ex vivo imaging demonstrated preferential targeting of the nanoparticles to lymphoma tumors over vital organs. Mass spectrometry analyses after administration of nanoparticle drugs confirmed tumor enrichment of the drug while reducing plasma levels. Furthermore, nanoparticle encapsulation allowed 3.5- to 6.5-fold reduction in drug dose, induced sustained remissions, and minimized toxicity. Our results support the development of nanoparticles to deliver BH3 mimetic combinations in lymphoma and in general for toxic drugs in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Nanopartículas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Sulfonamidas/efeitos adversos , Sulfonamidas/uso terapêutico , Índice Terapêutico , Tiofenos/efeitos adversos , Tiofenos/uso terapêutico
7.
J Vasc Interv Radiol ; 33(3): 308-315.e1, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800623

RESUMO

PURPOSE: To validate an immunofluorescence assay (IFA) detecting residual viable tumor (VT) as intraprocedural thermal ablation (TA) zone assessment and demonstrate its prognostic value for local tumor progression (LTP) after colorectal liver metastasis (CLM) TA. MATERIALS AND METHODS: This prospective study, approved by the institutional review board, included 99 patients with 155 CLMs ablated between November 2009 and January 2019. Tissue samples from the ablation zone (AZ) center and minimal margin underwent immunofluorescent microscopic examination interrogating cellular morphology and mitochondrial viability (IFA) within 30 minutes after ablation. The same tissue samples were subsequently evaluated with standard morphologic and immunohistochemical methods. The sensitivity, specificity, and overall accuracy of IFA versus standard morphologic and immunohistochemical examination were calculated. The LTP-free survival rates were evaluated for the 12-month follow-up period. RESULTS: Of the 311 tissue samples stained, 304 (98%) were deemed evaluable. Of these specimens, 27% (81/304) were considered positive for the presence of VT. The accuracy of IFA was 94% (286/304). The sensitivity and specificity were 100% (63/63) and 93% (223/241), respectively. The 18 false-positive IFA assessments corresponded to samples that included viable cholangiocytes. The 12-month LTP-free survival was 59% versus 78% for IFA positive versus negative for VT AZs, respectively (P < .001). There was no difference in LTP between margin positive only and central AZ-positive tumors (25% vs 31%, P = 1). CONCLUSIONS: The IFA assessment of the AZ can be completed intraprocedurally and serve as a valid real-time biomarker of complete tumor eradication or detect residual VT after TA. This method could improve tumor control by TA.


Assuntos
Ablação por Cateter , Neoplasias Colorretais , Neoplasias Hepáticas , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Neoplasias Colorretais/patologia , Progressão da Doença , Imunofluorescência , Secções Congeladas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
8.
Mol Cell ; 52(3): 353-65, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24120666

RESUMO

The DNA damage response (DDR) is activated by oncogenic stress, but the mechanisms by which this occurs, and the particular DDR functions that constitute barriers to tumorigenesis, remain unclear. We established a mouse model of sporadic oncogene-driven breast tumorigenesis in a series of mutant mouse strains with specific DDR deficiencies to reveal a role for the Mre11 complex in the response to oncogene activation. We demonstrate that an Mre11-mediated DDR restrains mammary hyperplasia by effecting an oncogene-induced G2 arrest. Impairment of Mre11 complex functions promotes the progression of mammary hyperplasias into invasive and metastatic breast cancers, which are often associated with secondary inactivation of the Ink4a-Arf (CDKN2a) locus. These findings provide insight into the mechanism of DDR engagement by activated oncogenes and highlight genetic interactions between the DDR and Ink4a-Arf pathways in suppression of oncogene-driven tumorigenesis and metastasis.


Assuntos
Neoplasias da Mama/genética , Carcinogênese , Proteínas de Ligação a DNA/metabolismo , Oncogenes , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia/genética , Proteína Homóloga a MRE11 , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Metástase Neoplásica/genética
9.
Ann Surg Oncol ; 26(6): 1833-1840, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30830537

RESUMO

BACKGROUND: This study aimed to evaluate whether rapid fluorescent tissue examination immediately after colorectal cancer liver metastasis (CLM) ablation correlates with standard pathologic and immunohistochemical (IHC) assessments. METHODS: This prospective, National Institutes of Health-supported study enrolled 34 consecutive patients with 53 CLMs ablated between January 2011 and December 2014. Immediately after ablation, core needle sampling of the ablation zone was performed. Tissue samples were evaluated with fluorescent viability (MitoTracker Red) and nuclear (Hoechst) stains. Confocal microscope imaging was performed within 30 min after ablation. The same samples were subsequently fixed and stained with hematoxylin and eosin (H&E). Identified tumor cells underwent IHC staining for proliferation (Ki67) and viability (OxPhos). The study pathologist, blinded to the H&E and IHC assessment, evaluated the fluorescent images separately to detect viable tumor cells. Sensitivity, specificity, and overall concordance of the fluorescent versus H&E and IHC assessments were calculated. RESULTS: A total of 63 tissue samples were collected and processed. The overall concordance rate between the immediate fluorescent and the subsequent H&E and IHC assessments was 94% (59/63). The fluorescent assessment sensitivity and specificity for the identification of tumor cells were respectively 100% (18/18) and 91% (41/45). CONCLUSIONS: The study showed a high concordance rate between the immediate fluorescent assessment and the standard H&E and IHC assessment of the ablation zone. Given the documented prognostic value of ablation zone tissue characteristics for outcomes after ablation of CLM, the fluorescent assessment offers a potential intra-procedural biomarker of complete tumor ablation.


Assuntos
Biomarcadores Tumorais/análise , Ablação por Cateter/métodos , Neoplasias Colorretais/patologia , Fluorescência , Neoplasias Hepáticas/secundário , Coloração e Rotulagem/métodos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/cirurgia , Seguimentos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Prognóstico , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos
10.
Radiology ; 280(3): 949-59, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27010254

RESUMO

Purpose To establish the prognostic value of biopsy of the central and marginal ablation zones for time to local tumor progression (LTP) after radiofrequency (RF) ablation of colorectal cancer liver metastasis (CLM). Materials and Methods A total of 47 patients with 67 CLMs were enrolled in this prospective institutional review board-approved and HIPAA-compliant study between November 2009 and August 2012. Mean tumor size was 2.1 cm (range, 0.6-4.3 cm). Biopsy of the center and margin of the ablation zone was performed immediately after RF ablation (mean number of biopsy samples per ablation zone, 1.9) and was evaluated for the presence of viable tumor cells. Samples containing tumor cells at morphologic evaluation were further interrogated with immunohistochemistry and were classified as either positive, viable tumor (V) or negative, necrotic (N). Minimal ablation margin size was evaluated in the first postablation CT study performed 4-8 weeks after ablation. Variables were evaluated as predictors of time to LTP with the competing-risks model (uni- and multivariate analyses). Results Technical effectiveness was evident in 66 of 67 (98%) ablated lesions on the first contrast material-enhanced CT images at 4-8-week follow-up. The cumulative incidence of LTP at 12-month follow-up was 22% (95% confidence interval [CI]: 12, 32). Samples from 16 (24%) of 67 ablation zones were classified as viable tumor. At univariate analysis, tumor size, minimal margin size, and biopsy results were significant in predicting LTP. When these variables were subsequently entered in a multivariate model, margin size of less than 5 mm (P < .001; hazard ratio [HR], 6.7) and positive biopsy results (P = .008; HR, 3.4) were significant. LTP within 12 months after RF ablation was noted in 3% (95% CI: 0, 9) of necrotic CLMs with margins of at least 5 mm. Conclusion Biopsy proof of complete tumor ablation and minimal ablation margins of at least 5 mm are independent predictors of LTP and yield the best oncologic outcomes. (©) RSNA, 2016.


Assuntos
Ablação por Cateter/métodos , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Meios de Contraste , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Ondas de Rádio , Resultado do Tratamento , Carga Tumoral
11.
Exp Cell Res ; 323(1): 178-188, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24468420

RESUMO

Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells.


Assuntos
Transporte Biológico/fisiologia , Comunicação Celular/fisiologia , Exossomos/metabolismo , Microdomínios da Membrana/metabolismo , Mesotelioma/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Nanotubos , Transdução de Sinais , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 109(34): E2276-83, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22652566

RESUMO

Most gastrointestinal stromal tumors (GISTs) harbor a gain-of-function mutation in the Kit receptor. GIST patients treated with the tyrosine kinase inhibitor imatinib frequently develop imatinib resistance as a result of second-site Kit mutations. To investigate the consequences of second-site Kit mutations on GIST development and imatinib sensitivity, we engineered a mouse model carrying in the endogenous Kit locus both the Kit(V558Δ) mutation found in a familial case of GIST and the Kit(T669I) (human KIT(T670I)) "gatekeeper" mutation found in imatinib-resistant GIST patients. Similar to Kit(V558/+) mice, Kit(V558;T669I/+) mice developed gastric and colonic interstitial cell of Cajal hyperplasia as well as cecal GIST. In contrast to the single-mutant Kit(V558/+) control mice, treatment of the Kit(V558;T669I/+) mice with either imatinib or dasatinib failed to inhibit oncogenic Kit signaling and GIST growth. However, this resistance could be overcome by treatment of Kit(V558;T669I/+) mice with sunitinib or sorafenib. Although tumor lesions were smaller in Kit(V558;T669I/+) mice than in single-mutant mice, both interstitial cell of Cajal hyperplasia and mast cell hyperplasia were exacerbated in Kit(V558;T669I/+) mice. Strikingly, the Kit(V558;T669I/+) mice developed a pronounced polycythemia vera-like erythrocytosis in conjunction with microcytosis. This mouse model should be useful for preclinical studies of drug candidates designed to overcome imatinib resistance in GIST and to investigate the consequences of oncogenic KIT signaling in hematopoietic as well as other cell lineages.


Assuntos
Eritrócitos/citologia , Tumores do Estroma Gastrointestinal/genética , Mutação , Piperazinas/farmacologia , Policitemia/genética , Proteínas Proto-Oncogênicas c-kit/genética , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem da Célula , Dasatinibe , Modelos Animais de Doenças , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Éxons , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Mesilato de Imatinib , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Tiazóis/farmacologia
13.
EMBO Mol Med ; 16(8): 1957-1980, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38956205

RESUMO

Acquired resistance to PARP inhibitors (PARPi) remains a treatment challenge for BRCA1/2-mutant breast cancer that drastically shortens patient survival. Although several resistance mechanisms have been identified, none have been successfully targeted in the clinic. Using new PARPi-resistance models of Brca1- and Bard1-mutant breast cancer generated in-vivo, we identified FLT1 (VEGFR1) as a driver of resistance. Unlike the known role of VEGF signaling in angiogenesis, we demonstrate a novel, non-canonical role for FLT1 signaling that protects cancer cells from PARPi in-vivo through a combination of cell-intrinsic and cell-extrinsic pathways. We demonstrate that FLT1 blockade suppresses AKT activation, increases tumor infiltration of CD8+ T cells, and causes dramatic regression of PARPi-resistant breast tumors in a T-cell-dependent manner. Moreover, PARPi-resistant tumor cells can be readily re-sensitized to PARPi by targeting Flt1 either genetically (Flt1-suppression) or pharmacologically (axitinib). Importantly, a retrospective series of breast cancer patients treated with PARPi demonstrated shorter progression-free survival in cases with FLT1 activation at pre-treatment. Our study therefore identifies FLT1 as a potential therapeutic target in PARPi-resistant, BRCA1/2-mutant breast cancer.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Feminino , Animais , Linhagem Celular Tumoral , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Transdução de Sinais/efeitos dos fármacos
14.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659913

RESUMO

BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.

15.
Clin Cancer Res ; 30(4): 703-718, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-37695642

RESUMO

PURPOSE: We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS: We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS: Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS: Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.


Assuntos
Aminopiridinas , Lipossarcoma , Humanos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Lipossarcoma/tratamento farmacológico , Lipossarcoma/patologia , Senescência Celular , Quinase 4 Dependente de Ciclina , Microambiente Tumoral
16.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645034

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

17.
J Clin Oncol ; 42(28): 3339-3349, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038258

RESUMO

PURPOSEThe impact of the intratumoral microbiome on immune checkpoint inhibitor (ICI) efficacy in patients with non-small-cell lung cancer (NSCLC) is unknown. Preclinically, intratumoral Escherichia is associated with a proinflammatory tumor microenvironment and decreased metastases. We sought to determine whether intratumoral Escherichia is associated with outcome to ICI in patients with NSCLC.PATIENTS AND METHODSWe examined the intratumoral microbiome in 958 patients with advanced NSCLC treated with ICI by querying unmapped next-generation sequencing reads against a bacterial genome database. Putative environmental contaminants were filtered using no-template controls (n = 2,378). The impact of intratumoral Escherichia detection on overall survival (OS) was assessed using univariable and multivariable analyses. The findings were further validated in an external independent cohort of 772 patients. Escherichia fluorescence in situ hybridization (FISH) and transcriptomic profiling were performed.RESULTSIn the discovery cohort, read mapping to intratumoral Escherichia was associated with significantly longer OS (16 v 11 months; hazard ratio, 0.73 [95% CI, 0.59 to 0.92]; P = .0065) in patients treated with single-agent ICI, but not combination chemoimmunotherapy. The association with OS in the single-agent ICI cohort remained statistically significant in multivariable analysis adjusting for prognostic features including PD-L1 expression (P = .023). Analysis of an external validation cohort confirmed the association with improved OS in univariable and multivariable analyses of patients treated with single-agent ICI, and not in patients treated with chemoimmunotherapy. Escherichia localization within tumor cells was supported by coregistration of FISH staining and serial hematoxylin and eosin sections. Transcriptomic analysis correlated Escherichia-positive samples with expression signatures of immune cell infiltration.CONCLUSIONRead mapping to potential intratumoral Escherichia was associated with survival to single-agent ICI in two independent cohorts of patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/microbiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia , Idoso de 80 Anos ou mais
18.
Nature ; 446(7137): 765-70, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17429393

RESUMO

Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/secundário , Neovascularização Patológica , Animais , Neoplasias da Mama/irrigação sanguínea , Capilares/crescimento & desenvolvimento , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Epirregulina , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos
19.
Proc Natl Acad Sci U S A ; 107(27): 12369-74, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566862

RESUMO

The molecular weight cutoff for glomerular filtration is thought to be 30-50 kDa. Here we report rapid and efficient filtration of molecules 10-20 times that mass and a model for the mechanism of this filtration. We conducted multimodal imaging studies in mice to investigate renal clearance of a single-walled carbon nanotube (SWCNT) construct covalently appended with ligands allowing simultaneous dynamic positron emission tomography, near-infrared fluorescence imaging, and microscopy. These SWCNTs have a length distribution ranging from 100 to 500 nm. The average length was determined to be 200-300 nm, which would yield a functionalized construct with a molecular weight of approximately 350-500 kDa. The construct was rapidly (t(1/2) approximately 6 min) renally cleared intact by glomerular filtration, with partial tubular reabsorption and transient translocation into the proximal tubular cell nuclei. Directional absorption was confirmed in vitro using polarized renal cells. Active secretion via transporters was not involved. Mathematical modeling of the rotational diffusivity showed the tendency of flow to orient SWCNTs of this size to allow clearance via the glomerular pores. Surprisingly, these results raise questions about the rules for renal filtration, given that these large molecules (with aspect ratios ranging from 100:1 to 500:1) were cleared similarly to small molecules. SWCNTs and other novel nanomaterials are being actively investigated for potential biomedical applications, and these observations-that high aspect ratio as well as large molecular size have an impact on glomerular filtration-will allow the design of novel nanoscale-based therapeutics with unusual pharmacologic characteristics.


Assuntos
Taxa de Filtração Glomerular/fisiologia , Glomérulos Renais/fisiologia , Rim/fisiologia , Nanotubos de Carbono , Animais , Linhagem Celular , Imunofluorescência , Humanos , Rim/citologia , Rim/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiologia , Cinética , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Peso Molecular , Néfrons/metabolismo , Néfrons/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tamanho da Partícula , Tomografia por Emissão de Pósitrons
20.
Methods Mol Biol ; 2593: 233-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513935

RESUMO

Technologies for staining and imaging multiple antigens in single tissue sections are developing rapidly due to their potential to uncover spatial relationships between proteins with cellular resolution. Detections are performed simultaneously or sequentially depending on the approach. However, several technologies can detect limited numbers of antigens or require expensive equipment and reagents. Another serious concern is the lack of flexibility. Most commercialized reagents are validated for defined antibody panels, and introducing any changes is laborious and costly. In this chapter, we describe a method where we combine, for the first time, multiplexed IF followed by sequential immunohistochemistry (IHC) with AEC chromogen on Leica Bond staining processors with paraffin tissue sections. We present data for successful detection of 10 antigens in a single tissue section with preserved tissue integrity. Our method is designed for use with any combination of antibodies of interest, with images collected using whole slide scanners. We include an image viewing and image analysis workflow using nonlinear warping to combine all staining passes in a single full-resolution image of the entire tissue section, aligned at the single cell level.


Assuntos
Biomarcadores Tumorais , Proteínas , Imuno-Histoquímica , Biomarcadores Tumorais/metabolismo , Imunofluorescência , Coloração e Rotulagem , Antígenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA