RESUMO
An allosterically regulated, asymmetric receptor featuring a binding cavity large enough to accommodate three-dimensional pharmaceutical guest molecules as opposed to planar, rigid aromatics, was synthesized via the Weak-Link Approach. This architecture is capable of switching between an expanded, flexible "open" configuration and a collapsed, rigid "closed" one. The structure of the molecular receptor can be completely modulated in situ through the use of simple ionic effectors, which reversibly control the coordination state of the Pt(II) metal hinges to open and close the molecular receptor. The substantial change in binding cavity size and electrostatic charge between the two configurations is used to explore the capture and release of two guest molecules, dextromethorphan and ß-estradiol, which are widely found as pollutants in groundwater.
Assuntos
Complexos de Coordenação/química , Dextrometorfano/química , Estradiol/química , Platina/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Teoria Quântica , Eletricidade EstáticaRESUMO
A new class of homoligated palladium(II) weak-link approach (WLA) complexes bearing hemilabile N-heterocyclic carbene (NHC)-thioether ligands is reported that, unlike previous tweezer-like WLA complexes, expand and contract in a linear fashion when switching between configurational states. These complexes can be chemically switched between a trans open state and a trans closed state via the addition or subsequent extraction of Cl-. These bis(NHC) complexes also display unusual isomerization behavior. For example, an NMR spectroscopic investigation into the solution-state configuration of the open complex reveals the presence of interconverting syn,trans and anti,trans isomers, and a kinetic study shows that the barrier is large enough to isolate, store, and study the anti,trans isomer at room temperature. Notably, the linker length between the NHC and thioether moieties can be tailored with additional -CH2- groups, which affords considerable control over the geometric changes imposed by switching. Therefore, this class of complexes may be useful in the construction of allosterically regulated supramolecular assemblies and materials.