RESUMO
The Heisenberg antiferromagnetic chain is a canonical model for understanding many-body gaps that emerge in quantum magnets, and as a result, there has been significant work on this class of materials for much of the past century. Chiral chains, on the other hand, have received markedly less attention. [Cu(pym)(H2O)4]SiF6·H2O (pym = pyrimidine) is an S = 1/2 chiral antiferromagnet with an unconventional spin gap and no long-range ordering at zero field, features that distinguish it from more conventional spin chains that host simple phase diagrams and no magnetoelectric coupling. Here, we report pulsed magnetic field electrical polarization measurements, strong magnetoelectric coupling, and extraordinary magnetic field - temperature phase diagrams for this system. In addition to three low field transitions, we find a series of phase transitions between 40 and 70 T that depend on the magnetic field direction. The observation of electric polarization in a material with a nonpolar crystal structure implies symmetry-breaking magnetic ordering that creates a polar axis - a mechanism that we discuss in terms of significant interactions between the chiral chains as well as Dzyaloshinskii-Moriya effects. Further, we find second-order magnetoelectric coupling, allowing us to deduce the magnetic point group of the highest polarization phase. These findings are in contrast to expectations for an unordered one-dimensional spin chain and reveal a significantly greater complexity of behavior in applied field.
RESUMO
We present the magnetic properties of a new family of S = 1 molecule-based magnets, NiF2(3,5-lut)4·2H2O and NiX2(3,5-lut)4, where X = HF2, Cl, Br, or I (lut = lutidine C7H9N). Upon creation of isolated Ni-X···X-Ni and Ni-F-H-F···F-H-F-Ni chains separated by bulky and nonbridging lutidine ligands, the effect that halogen substitution has on the magnetic properties of transition-metal-ion complexes can be investigated directly and in isolation from competing processes such as Jahn-Teller distortions. We find that substitution of the larger halide ions turns on increasingly strong antiferromagnetic interactions between adjacent Ni2+ ions via a novel through-space two-halide exchange. In this process, the X···X bond lengths in the Br and I materials are more than double the van der Waals radius of X yet can still mediate significant magnetic interactions. We also find that a simple model based on elongation/compression of the Ni2+ octahedra cannot explain the observed single-ion anisotropy in mixed-ligand compounds. We offer an alternative that takes into account the difference in the electronegativity of axial and equatorial ligands.
RESUMO
The [Zn1-xNix(HF2)(pyz)2]SbF6 (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm-1)] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm-1)]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN4 (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems.
RESUMO
The quasi-one-dimensional molecule-based Heisenberg antiferromagnet Cu(NO3)2(pyz)3 has an intrachain coupling J = 13.7(1) K () and exhibits a state of long-range magnetic order below TN = 0.105(1) K. The ratio of interchain to intrachain coupling is estimated to be |J'/J| = 3.3 × 10-3, demonstrating a high degree of isolation for the Cu chains.
RESUMO
The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.
RESUMO
We combined synchrotron-based infrared spectroscopy, Raman scattering, and diamond anvil cell techniques with complementary lattice dynamics calculations to reveal local lattice distortions in Mn[N(CN)2]2 under compression. Strikingly, we found a series of transitions involving octahedral counter-rotations, changes in the local Mn environment, and deformations of the superexchange pathway. In addition to reinforcing magnetic property trends, these pressure-induced local lattice distortions may provide an avenue for the development of new functionalities.
RESUMO
Magnetoelastic coupling in the quantum magnet [Ni(HF2)(pyrazine)2]SbF6 has been investigated via vibrational spectroscopy using temperature, magnetic field, and pressure as tuning parameters. While pyrazine is known to be a malleable magnetic superexchange ligand, we find that HF2- is surprisingly sensitive to external stimuli and is actively involved in both the magnetic quantum phase transition and the series of pressure-induced structural distortions. The amplified spin-lattice interactions involving the bifluoride ligand can be understood in terms of the relative importance of the intra- and interplanar magnetic energy scales.
RESUMO
The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero-field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (Jâ¥) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (J(pyz)) within the two-dimensional [Ni(pyz)2](2+) square planes. Regardless of X, J(pyz) is similar for the four compounds and is roughly 1 K.
RESUMO
MnCl2(urea)2 is a new linear chain coordination polymer that exhibits slightly counter-rotated Mn2Cl2 rhomboids along the chain-axis. The material crystallizes in the noncentrosymmetric orthorhombic space group Iba2, with each Mn(II) ion equatorially surrounded by four Cl(-) that lead to bibridged ribbons. Urea ligands coordinate via O atoms in the axial positions. Hydrogen bonds of the Cl···H-N and O···H-N type link the chains into a quasi-3D network. Magnetic susceptibility data reveal a broad maximum at 9 K that is consistent with short-range magnetic order. Pulsed-field magnetization measurements conducted at 0.6 K show that a fully polarized magnetic state is achieved at Bsat = 19.6 T with another field-induced phase transition occurring at 2.8 T. Zero-field neutron diffraction studies made on a powdered sample of MnCl2(urea)2 reveal that long-range magnetic order occurs below TN = 3.2(1) K. Additional Bragg peaks due to antiferromagnetic (AFM) ordering can be indexed according to the Ib'a2' magnetic space group and propagation vector τ = [0, 0, 0]. Rietveld profile analysis of these data revealed a Néel-type collinear ordering of Mn(II) ions with an ordered magnetic moment of 4.06(6) µB (5 µB is expected for isotropic S = (5)/2) oriented along the b-axis, i.e., perpendicular to the chain-axis that runs along the c-direction. Owing to the potential for spatial exchange anisotropy and the pitfalls in modeling bulk magnetic data, we analyzed inelastic neutron scattering data to retrieve the exchange constants: Jc = 2.22 K (intrachain), Ja = -0.10 K (interchain), and D = -0.14 K with J > 0 assigned to AFM coupling. This J configuration is most unusual and contrasts the more commonly observed AFM interchain coupling of 1D chains.
RESUMO
Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.
RESUMO
Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.
RESUMO
The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, ß = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, ß = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at â¼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.
RESUMO
[Ni(HF(2))(3-Clpy)(4)]BF(4) (py = pyridine) is a simple one-dimensional (1D) coordination polymer composed of compressed NiN(4)F(2) octahedra that form chains with bridging HF(2)(-) ligands. In spite of significant distortion of the HF(2)(-) bridge, a quasi-1D antiferromagnetic (AFM) behavior was observed with J(FHF) = 4.86 K.
RESUMO
[Ni(HF(2))(pyz)(2)]X {pyz = pyrazine; X = PF(6)(-) (1), SbF(6)(-) (2)} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN(4)F(2) octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) Å, and ß = 81.610(3)° while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) Å and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via µ-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF(6)(-) and SbF(6)(-) counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (â¼157°) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater π-donation of the HF(2)(-) ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and λ-like peaks in dχT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (T(N)). Muon-spin relaxation and specific heat studies confirm these T(N)'s. A comparative analysis of χ vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J(1D)) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J(â¥)), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered. While it is difficult to draw absolute conclusions regarding the magnitude (and sign) of J(â¥) and D based solely on powder data, further support offered by related Ni(II)-pyz compounds and our LFT and density-functional theory (DFT) results lead us to a consistent quasi-1D magnetic description for 1 and 2.
Assuntos
Elétrons , Magnetismo , Compostos Organometálicos/química , Teoria Quântica , Ácido Fluorídrico/química , Estrutura Molecular , Níquel/química , Compostos Organometálicos/síntese química , Pirazinas/químicaRESUMO
X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz)(2)(S(2)O(8)) consists of 2D square nets of Ag(2+) ions resulting from the corner-sharing of axially elongated AgN(4)O(2) octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, mu(+)SR measurements indicate that Ag(pyz)(2)(S(2)O(8)) undergoes 3D magnetic ordering below 7.8(3) K.
RESUMO
Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu-F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.
RESUMO
Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration.
RESUMO
Ionic liquids containing lanthanide halide anions give the opportunity to investigate magnetic behaviour in non-ordered systems. Reported herein is the synthesis and characterization of ionic liquids containing a series of lanthanide halide anions, with the resulting materials displaying unusual behaviour below 50 K. Specifically, the ionic liquid structural glass formation appears to drive magnetic behaviour due to cluster formation of the anions during rapid cooling. This system presents a possible probe to study the dynamics of glass forming materials.
RESUMO
[Cu(HF2)(pyz)2]BF4 consists of rare mu(1,3) bridging HF2- anions and micro-pyrazine ligands leading to a 3D pseudo-cubic framework that antiferromagnetically orders below 1.54(1) K.