Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3125-3132, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421805

RESUMO

Dilute magnetic semiconductors (DMSs) have attracted much attention because of their potential use in spintronic devices. Here, we demonstrate the observation of robust ferromagnetism in a solution-processable halide perovskite semiconductor with dilute magnetic ions. By codoping of magnetic (Fe2+) and aliovalent (Bi3+) metal ions into CH3NH3PbCl3 (MAPbCl3) perovskite, ferromagnetism with well-saturated magnetic hysteresis loops and a maximum coercivity field of 1280 Oe was observed below 12 K. The ferromagnetic resonance measurements revealed that the incorporation of aliovalent ions modulates the carrier concentration and plays an essential role in realizing the ferromagnetism in dilute magnetic halide perovskites. Magnetic ions are proposed to interact through itinerant charge carriers to achieve ferromagnetic coupling. Our work provides a new avenue for the development of solution-processable magnetic semiconductors.

2.
J Am Chem Soc ; 146(17): 12225-12232, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635866

RESUMO

The control of spin relaxation mechanisms is of great importance for spintronics applications as well as for fundamental studies. Layered metal-halide perovskites represent an emerging class of semiconductors with rich optical spin physics, showing potential for spintronic applications. However, a major hurdle arises in layered metal-halide perovskites with strong spin-orbit coupling, where the spin lifetime becomes extremely short due to D'yakonov-Perel' scattering and Bir-Aronov-Pikus at high carrier density. Using the circularly polarized pump-probe transient reflection technique, we experimentally reveal the important scattering for spin relaxation beyond the electron-hole exchange strength in the Dion-Jacobson (DJ)-type 2D perovskites (3AMP)(MA)n-1PbnI3n+1 [3AMP = 3-(aminomethyl)piperidinium, n = 1-4]. Despite a more than 10-fold increase in carrier concentration, the spin lifetimes for n = 3 and 4 are effectively maintained. We reveal neutral impurity and polar optical phonon scatterings as significant contributors to the momentum relaxation rate. Furthermore, we show that more octahedral distortions induce a larger deformation potential which is reflected on the acoustic phonon properties. Coherent acoustic phonon analysis indicates that the polaronic effect is crucial in achieving control over the scattering mechanism and ensuring spin lifetime protection, highlighting the potential of DJ-phase perovskites for spintronic applications.

3.
Small ; 20(25): e2307360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38217294

RESUMO

Ion diffusion is a fundamentally important process in understanding and manipulating the optoelectronic properties of semiconductors. Most current studies on ionic diffusion have been focusing on perovskite polycrystalline thin films and nanocrystals. However, the random orientation and grain boundaries can heavily interfere with the kinetics of ion diffusion, where the experimental results only reveal the average ion exchange kinetics and the actual ion diffusion mechanisms perpendicular to the direction of individual crystal facets remain unclear. Here, the anion (Cl, I) diffusion anisotropy on (111) and (100) facets of CsPbBr3 single crystals is demonstrated. The as-grown single crystals with (111) and (100) facets exhibit anisotropic growth with different halide incorporation, which lead to different resulting optoelectronic properties. Combined experimental characterizations and theoretical calculations reveal that the (111) CsPbBr3 shows a faster anion diffusion behavior compared with that of the (100) CsPbBr3, with a lower diffusion energy barrier, a larger built-in electric field, and lower inverse defect formation energy. The work highlights the anion diffusion anisotropic mechanisms perpendicular to the direction of individual crystal facets for optimizing and designing perovskite optoelectronic devices.

4.
Angew Chem Int Ed Engl ; : e202400554, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708923

RESUMO

Hybrid metal halides are an extraordinary class of optoelectronic materials with extensive applications. To further diversify and study the in-depth structure-property relations, we report here a new family of 21 zero-dimensional hybrid bimetallic chlorides with the general formula A(L)n[BClm] (A=rare earth (RE), alkaline earth metals and Mn; L=solvent ligand; and B=Sb, Bi and Te). The RE(DMSO)8[BCl6] (RE=La, Ce, Sm, Eu, Tb, and Dy; DMSO=dimethyl sulfoxide) series shows broadband emission attributed to triplet radiative recombination from Sb and Bi, incorporating the characteristic emission of RE metals, where Eu(DMSO)8[BiCl6] shows a staggering PL quantum yield of 94 %. The pseudo-octahedral [SbCl5] with Cl vacancy in AII(DMSO)6[SbCl5] (AII=Mg, Ca and Mn) and the square pyramidal [SbCl5] in AII(TMSO)6[SbCl5] (TMSO=tetramethylene sulfoxide) enhance the stereoactive expression of the 5 s2 lone pairs of Sb3+, giving rise to the observation of dual-band emission of singlet and triplet emission, respectively. A series of Te(IV) analogues have been characterized, showing blue-light-excitable single-band emission. This work expands the materials space for hybrid bimetallic halides with an emphasis on harnessing the RE elements, and provides important insights into designing new emitters and regulating their properties.

5.
Angew Chem Int Ed Engl ; : e202407675, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770616

RESUMO

Manipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface-dependent anisotropic SHG with the precise design of (101) and (2 1 ‾ ${\bar 1}$ 0) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3×(2 1 ‾ ${\bar 1}$ 0) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (2 1 ‾ ${\bar 1}$ 0), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X-ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature-dependent steady-state and time-resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X-ray diffraction patterns show the (101) MAGeI3 possesses larger in-plane polar units [GeI3]- density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (2 1 ‾ ${\bar 1}$ 0) facet, and the larger built-in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite-based nonlinear optical materials.

6.
Small ; 19(25): e2300938, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932944

RESUMO

Chiral organic-inorganic hybrid metal halide materials have shown great potential for circularly polarized luminescence (CPL) related applications for their tunable structures and efficient emissions. Here, this work combines the highly emissive Cu4 I4 cubane cluster with chiral organic ligand R/S-3-quinuclidinol, to construct a new type of 1D Cu-I chains, namely Cu4 I4 (R/S-3-quinuclidinol)3 , crystallizing in noncentrosymmetric monoclinic P21 space group. These enantiomorphic hybrids exhibit long-term stability and show bright yellow emission with a photoluminescence quantum yield (PLQY) close to 100%. Due to the successful chirality transfer from the chiral ligands to the inorganic backbone, the enantiomers show intriguing chiroptical properties, such as circular dichroism (CD) and CPL. The CPL dissymmetry factor (glum ) is measured to be ≈4 × 10-3 . Time-resolved photoluminescence (PL) measurements show long averaged decay lifetime up to 10 µs. The structural details within the Cu4 I4 reveal the chiral nature of these basic building units, which are significantly different than in the achiral case. This discovery provides new structural insights for the design of high performance CPL materials and their applications in light emitting devices.

7.
Inorg Chem ; 62(24): 9722-9731, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37285221

RESUMO

Organic-inorganic hybrid metal halides have attracted widespread attention due to their excellent tunability and versatility. Here, we have selected pyridinium derivatives with different substituent groups or substitution positions as the organic templating cations and obtained six 1D chain-like structures. They are divided into three types: type I (single chain), type II (double chain), and type III (triple chain), with tunable optical band gaps and emission properties. Among them, only (2,4-LD)PbBr3 (2,4-LD = 2,4-lutidine) shows an exciton-dependent emission phenomenon, ranging from strong yellow-white to weak red-white light. By comparing its photoluminescence spectrum with that of its bromate (2,4-LD)Br, it is found that the strong yellow-white emission at 534 nm mainly came from the organic component. Furthermore, through a comparison of the fluorescence spectra and lifetimes of (2,4-LD)PbBr3 and (2-MP)PbBr3 (2-MP = 2-methylpyridine) with similar structures at different temperatures, we confirm that the tunable emission of (2,4-LD)PbBr3 comes from different photoluminescent sources corresponding to organic cations and self-trapped excitons. Density functional theory calculations further reveal that (2,4-LD)PbBr3 has a stronger interaction between organic and inorganic components compared to (2-MP)PbBr3. This work highlights the importance of organic templating cations in hybrid metal halides and the new functionalities associated with them.

8.
Proc Natl Acad Sci U S A ; 117(28): 16121-16126, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601216

RESUMO

The application of pressure can achieve novel structures and exotic phenomena in condensed matters. However, such pressure-induced transformations are generally reversible and useless for engineering materials for ambient-environment applications. Here, we report comprehensive high-pressure investigations on a series of Dion-Jacobson (D-J) perovskites A'A n-1Pb n I3n+1 [A' = 3-(aminomethyl) piperidinium (3AMP), A = methylammonium (MA), n = 1, 2, 4]. Our study demonstrates their irreversible behavior, which suggests pressure/strain engineering could viably improve light-absorber material not only in situ but also ex situ, thus potentially fostering the development of optoelectronic and electroluminescent materials. We discovered that the photoluminescence (PL) intensities are remarkably enhanced by one order of magnitude at mild pressures. Also, higher pressure significantly changes the lattices, boundary conditions of electronic wave functions, and possibly leads to semiconductor-metal transitions. For (3AMP)(MA)3Pb4I13, permanent recrystallization from 2D to three-dimensional (3D) structure occurs upon decompression, with dramatic changes in optical properties.

9.
Angew Chem Int Ed Engl ; 62(10): e202216720, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622348

RESUMO

Hybrid organic-inorganic antimony halides have attracted increasing attention due to the non-toxicity, stability, and high photoluminescence quantum yield (PLQY). To shed light on the structural factors that contribute to the high PLQY, five pairs of antimony halides with general formula A2 SbCl5 and A2 Sb2 Cl8 are synthesized via two distinct methods and characterized. The A2 SbCl5 type adopts square pyramidal [SbCl5 ] geometry with near-unity PLQY, while the A2 Sb2 Cl8 adopts seesaw dimmer [Sb2 Cl8 ] geometry with PLQY≈0 %. Through combined data analysis with the literature, we have found that A2 SbCl5 series with square pyramidal geometry generally has much longer Sb⋅⋅⋅Sb distances, leading to more expressed lone pairs of SbIII . Additional factors including Sb-Cl distance and stability of antimony chlorides may also affect PLQY. Our targeted synthesis and correlated insights provide efficient tools to precisely form highly emissive materials for optoelectronic applications.

10.
Angew Chem Int Ed Engl ; 62(17): e202215206, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527254

RESUMO

Introducing chirality into the metal-halide hybrids has enabled many emerging properties including chiroptical activity, spin-dependent transport, and ferroelectricity. However, most of the chiral metal-halide hybrids to date are non-emissive, and the underlying mechanism remains elusive. Here, we show a new strategy to turn on the circularly polarized luminescence (CPL) in chiral metal-halide hybrids. We demonstrate that alloying Sb3+ into chiral indium-chloride hybrids dramatically increases the photoluminescence quantum yield in two new series of chiral indium-antimony chlorides. These materials exhibit strong CPL signals with tunable energy and a high dissymmetry factor up to 1.5×10-2 . Mechanistic studies reveal that the emission originates from the self-trapped excitons centered in 5s2 Sb3+ . Moreover, near-ultraviolet pumped white light is demonstrated with a polarization up to 6.0 %. Our work demonstrates new strategies towards highly luminescent chiral metal-halide hybrids.

11.
Angew Chem Int Ed Engl ; 62(29): e202304486, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194643

RESUMO

Non-covalent interactions play an essential role in directing the self-assembly of hybrid organic-inorganic crystals. In hybrid halide perovskites, hydrogen bonding has been the paramount non-covalent interaction. Here, we show another non-covalent interaction, namely, the halogen bond interaction, that directs a symmetry-breaking assembly in a new series of two-dimensional (2D) perovskites (ICH2 CH2 NH3 )2 (CH3 NH3 )n-1 Pbn I3n+1 (n is the layer thickness, n=1-4). Structural analysis shows that the halogen bond strength varies with the layer thickness. For the odd number (n=1, 3) layered perovskites, stronger halogen interaction leads to centrosymmetric structures, whereas for the n=2 layered perovskites, weaker halogen bonds result in non-centrosymmetric structures. Transient reflection spectroscopy shows a suppressed radiative recombination rate (k2 ≈0) and prolonged spin lifetime for n=2 structure, suggesting an enhanced Rashba band splitting effect. The structural asymmetry is further confirmed with a reversible bulk photovoltaic effect. Our work provides a new design strategy to enable hybrid perovskites with emerging properties and functionalities associated with structural asymmetry.

12.
Angew Chem Int Ed Engl ; 62(35): e202307646, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37427861

RESUMO

Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2 BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9 eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.

13.
Angew Chem Int Ed Engl ; 62(52): e202314977, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991471

RESUMO

Hybrid metal halides are emerging semiconductors as promising candidates for optoelectronics. The pursuit of hybridizing various dimensions of metal halides remains a desirable yet highly complex endeavor. By utilizing dimension engineering, a diverse array of new materials with intrinsically different electronic and optical properties has been developed. Here, we report a new family of 2D-0D hybrid bimetallic halides, (C6 N2 H14 )2 SbCdCl9 ⋅ 2H2 O (SbCd) and (C6 N2 H14 )2 SbCuCl9 ⋅ 2H2 O (SbCu). These compounds adopt a new layered structure, consisting of alternating 0D square pyramidal [SbCl5 ] and 2D inorganic layers sandwiched by organic layers. SbCd and SbCu have optical band gaps of 3.3 and 2.3 eV, respectively. These compounds exhibit weak photoluminescence (PL) at room temperature, and the PL gradually enhances with decreasing temperature. Density functional theory (DFT) calculations reveal that SbCd and SbCu are direct gap semiconductors, where first-principles band gaps follow the experimental trend. Moreover, given the different pressure responses of 0D and 2D components, these materials exhibit highly tunable electronic structures during compression, where a remarkable 11 times enhancement in PL emission is observed for SbCd at 19 GPa. This work opens new avenues for designing new layered bimetallic halides and further manipulating their structures and optoelectronic properties via pressure.

14.
J Am Chem Soc ; 144(15): 6661-6666, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35377623

RESUMO

Hybrid layered double perovskite (HLDP) halides comprise hexacoordinated 1+ and 3+ metals in the octahedral sites within a perovskite layer and organic amine cations between the layers. Progress on such materials has hitherto been limited to compounds containing main group 3+ ions isoelectronic with PbII (such as SbIII and BiIII). Here, we report eight HLDP halides from the A2MIMIIIX8 family, where A = para-phenylenediammonium (PPDA), 1,4-butanediammonium (1,4-BDA), or 1,3-propanediammonium (1,3-PDA); MI = Cu or Ag; MIII = Ru or Mo; X = Cl or Br. The optical band gaps, which lie in the range 1.55 to 2.05 eV, are tunable according to the layer composition, but are largely independent of the spacer. Magnetic measurements carried out for (PPDA)2AgIRuIIICl8 and (PPDA)2AgIMoIIICl8 show no obvious evidence of a magnetic ordering transition. While the t2g3 MoIII compound displays Curie-Weiss behavior for a spin-only d3 ion, the t2g5 RuIII compound displays marked deviations from the Kotani theory.

15.
Phys Rev Lett ; 129(17): 177401, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332259

RESUMO

Two-dimensional organic-inorganic hybrid perovskites (2DHPs) are natural quantum-well-like materials, in which strong quantum and dielectric confinement effects due to the organic spacers give rise to tightly bound excitons with large binding energy. To examine the mutual interactions between the organic spacer cations and the inorganic charge-residing octahedral framework in 2DHPs, here we perform femtosecond pump-probe spectroscopy by direct vibrational pumping of the organic spacers, followed by a visible-to-ultraviolet probe covering their excitonic resonances. Measurements on prototypical lead-bromide based 2DHP compounds, (BA)_{2}PbBr_{4} and (BA)_{2}(FA)Pb_{2}Br_{7} (BA^{+}=butylammonium; FA^{+}=formamidinium), reveal two distinct regimes of the temporal response. The first regime is dominated by a pump-induced transient expansion of the organic spacer layers that reduces the exciton oscillator strength, whereas the second regime arises from pump-induced lattice heating effects primarily associated with a spectral shift of the exciton energy. In addition, vibrational excitation enhances the biexciton emission, which we attribute to a stronger intralayer exciton confinement as well as vibrationally induced exciton detrapping from defect states. Our study provides fundamental insights regarding the impact of organic spacers on excitons in 2DHPs, as well as the excited-state dynamics and vibrational energy dissipation in these structurally diverse materials.

16.
J Chem Phys ; 157(8): 084705, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36049985

RESUMO

Low-dimensional metal halide perovskites are attracting extensive attention due to their enhanced quantum confinement and stability compared to three-dimensional perovskites. However, low dimensional connectivity in the inorganic frameworks leads to strongly bounded excitons with limited absorption properties, which impedes their application in photovoltaic devices. Here, we show that, by incorporating a strong electron accepting methylviologen cation, charge transfer (CT) at the organic/inorganic interface can effectively tune the optical properties in one-dimensional (1D) lead-halide perovskites. Both 1D MVPb2I6 and MVPb2Br6 display expanded absorption and photoresponse activity compared to CT inactive cations. The photoinduced CT process in MVPb2I6 was further characterized by transient absorption spectroscopy, which shows an ultrafast CT process within 1 ps, generating charge separated states. Our work unveils the interesting photophysics of these unconventional 1D perovskites with functional organic chromophores.

17.
Angew Chem Int Ed Engl ; 61(30): e202205906, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35535865

RESUMO

Chiral hybrid metal halides with a high dissymmetry factor (glum ) and a superior photoluminescence quantum yield (PLQY) are promising candidates for circularly polarized luminescence (CPL) light sources. Here, we report eight new chiral hybrid manganese halides, crystallizing in the non-centrosymmetric space group P21 21 21 and showing intense CPL emissions. Oppositely-signed circular dichroism (CD) and CPL signals are detected according to the R- and S-configurations of the chiral alkanolammonium cations. Time-resolved PL spectra show long averaged decay lifetimes up to 1 ms for (R-3-quinuclidinol)MnBr3 (R-1). The glum of polycrystalline samples for coordinated structures (23×10-3 ) is more than doubled compared with the non-coordinated ones (8.5×10-3 ), due to the structural variations. R-1 exhibit both a high glum and a high PLQY (50.2 %). The effective chirality transfer mechanism through coordination bonds, with strongly emissive MnII centers, enables a new class of high-performance CPL materials.

18.
Angew Chem Int Ed Engl ; 61(43): e202208875, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36043492

RESUMO

Ge-based hybrid perovskite materials have demonstrated great potential for second harmonic generation (SHG) due to the geometry and lone-pair induced non-centrosymmetric structures. Here, we report a new family of hybrid 3D Ge-based bromide perovskites AGeBr3 , A=CH3 NH3 (MA), CH(NH2 )2 (FA), Cs and FAGe0.5 Sn0.5 Br3 , crystallizing in polar space groups. These compounds exhibit tunable SHG responses, where MAGeBr3 shows the strongest SHG intensity (5×potassium dihydrogen phosphate, KDP). Structural and theoretical analysis indicate the high SHG efficiency is attributed to the displacement of Ge2+ along [111] direction and the relatively strong interactions between lone pair electrons of Ge2+ and polar MA cations along the c-axis. This work provides new structural insights for designing and fine-tuning the SHG properties in hybrid metal halide materials.

19.
Chem Res Toxicol ; 34(6): 1578-1587, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34019419

RESUMO

Toxic effects induced upon exposure to low-dose bisphenol A (BPA) or bisphenol S (BPS) remains controversial. In this study, metabolomics was used to examine the metabolomic perturbation arising from 28 days of exposure to BPA or BPS at 50 µg/kg bw/day in Sprague-Dawley (SD) rats. Endogenous metabolite profiling revealed a clear discrimination of metabolome in the rat plasma among BPA-treatment, BPS-treatment, and control groups. BPA exposure induced the up-regulation of 19 metabolites and down-regulation of 32 metabolites in plasma of SD rats, compared with the control. BPS exposure induced the up-regulation of 15 metabolites and the down-regulation of 33 metabolites in the plasma of SD rats, compared with the control. Joint pathway analysis suggested marked perturbations in the citrate cycle, butanoate metabolism, and alanine, aspartate, and glutamate metabolism for BPA-exposed rats as well as glycerophospholipid metabolism for BPS-exposed rats. These findings provide novel insights into associations between the metabolomic perturbation and phenotypic changes arising from BPA and BPS exposure.


Assuntos
Compostos Benzidrílicos/farmacologia , Fenóis/farmacologia , Sulfonas/farmacologia , Alanina/metabolismo , Animais , Ácido Aspártico/metabolismo , Compostos Benzidrílicos/administração & dosagem , Compostos Benzidrílicos/metabolismo , Butiratos/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Glicerofosfolipídeos , Masculino , Fenóis/administração & dosagem , Fenóis/metabolismo , Ratos , Ratos Sprague-Dawley , Sulfonas/administração & dosagem , Sulfonas/metabolismo
20.
Exp Cell Res ; 388(1): 111801, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877304

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by autoimmune-mediated platelet destruction and impaired platelet production, which can lead to an increased risk of bleeding. The clinical management of ITP currently remains a challenge for hematologists. We explored the role of interleukin-9 (IL-9) in the treatment of CD41-induced ITP, and investigated its underlying mechanisms in a CD41-induced ITP mouse model. IL-9 treatment increased the numbers of mature megakaryocytes (CD41+CD42d+) and CD41+Sca-1+ cells in the bone marrow in these model mice, while IL-9 receptor (IL-9R) small interfering RNA (siRNA) inhibited the process. Moreover, phosphorylated signal transducer and activator of transcription 5 (STAT5), as a downstream molecule of IL-9R, was increased after IL-9 treatment. We next investigated the source of IL-9 in bone marrow, osteoblasts produced the highest level of IL-9. These results confirmed that IL-9 could prevent CD41-induced ITP in BALB/c mice by regulating osteoblasts and activating IL-9R/STAT5 signaling in megakaryocytes, thus providing further evidence for IL-9 as a promising therapeutic agent for the treatment of ITP.


Assuntos
Interleucina-9/uso terapêutico , Janus Quinases/metabolismo , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Interleucina-9/farmacologia , Masculino , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Púrpura Trombocitopênica Idiopática/prevenção & controle , Receptores de Interleucina-9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA