Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2106-2113, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297747

RESUMO

Single-photon avalanche diodes (SPADs) that are sensitive to photons in the Short-wave infrared and extended short-wave infrared (SWIR and eSWIR) spectra are important components for communication, ranging, and low-light level imaging. The high gain, low excess noise factor, and widely tunable bandgap of AlxIn1-xAsySb1-y avalanche photodiodes (APDs) make them a suitable candidate for these applications. In this work, we report single-photon-counting results for a separate absorption, charge, and multiplication (SACM) Geiger-mode SPAD within a gated-quenching circuit. The single-photon avalanche probabilities surpass 80% at 80 K, corresponding with single-photon detection efficiencies of 33% and 12% at 1.55 µm and 2 µm, respectively.

2.
PLoS Biol ; 18(3): e3000668, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226010

RESUMO

Science communication and outreach are essential for training the next generation of scientists and raising public awareness for science. Providing effective science, technology, engineering, and mathematics (STEM) educational outreach to students in classrooms is challenging because of the need to form partnerships with teachers, the time commitment required for the presenting scientist, and the limited class time allotted for presentations. In our Present Your Ph.D. Thesis to a 12-Year Old outreach project, our novel solution to this problem is hosting a youth science workshop (YSW) on our university campus. The YSW is an interpersonal science communication and outreach experience in which graduate students from diverse scientific disciplines introduce middle and high school students to their cutting-edge research and mentor them to develop a white-board presentation to communicate the research to the workshop audience. Our assessment of the YSW indicated that participating young students expressed significantly more positive attitudes toward science and increased motivation to work in a STEM career after attending the workshop. Qualitative follow-up interviews with participating graduate students' show that even with minimal time commitment, an impactful science communication training experience can be achieved. The YSW is a low-cost, high-reward educational outreach event amenable to all disciplines of science. It enhances interest and support of basic science research while providing opportunities for graduate students to engage with the public, improve their science communication skills, and enhance public understanding of science. This YSW model can be easily implemented at other higher education institutions to globally enhance science outreach initiatives.


Assuntos
Relações Comunidade-Instituição , Tutoria/métodos , Ciência/educação , Estudantes , Comunicação , Humanos , Tutoria/estatística & dados numéricos , Modelos Educacionais , Motivação , Avaliação de Programas e Projetos de Saúde , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Inquéritos e Questionários
3.
Opt Express ; 29(23): 38939-38945, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808936

RESUMO

We investigate the room-temperature bandwidth performance of AlInAsSb avalanche photodiodes under 2-µm illumination. Parameter characterization denotes RC-limited performance. While measurements indicate a maximum gain-bandwidth product of 44 GHz for a 60-µm-diameter device, we scale this performance to smaller device sizes based on the RC response. For a 15-µm-diameter device, we predict a maximum gain-bandwidth product of approximately 144 GHz based on the reported measurements.

4.
Opt Express ; 27(10): 13611-13623, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163822

RESUMO

In this letter, we report optical pump terahertz (THz) near-field probe (n-OPTP) and optical pump THz near-field emission (n-OPTE) experiments of graphene/InAs heterostructures. Near-field imaging contrasts between graphene and InAs using these newly developed techniques as well as spectrally integrated THz nano-imaging (THz s-SNOM) are systematically studied. We demonstrate that in the near-field regime (λ/6000), a single layer of graphene is transparent to near-IR (800 nm) optical excitation and completely "screens" the photo-induced far-infrared (THz) dynamics in its substrate (InAs). Our work reveals unique frequency-selective ultrafast dynamics probed at the near field. It also provides strong evidence that n-OPTE nanoscopy yields contrast that distinguishes single-layer graphene from its substrate.

5.
Nano Lett ; 16(11): 6931-6938, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27775368

RESUMO

We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films. Additionally, we isolated the bismuth thin films on freestanding flexible cured-epoxy post-transfer. The adhesion energy at the bismuth/silicon interface was measured to be ∼1 J/m2, comparable to that of exfoliated and wet transferred graphene. This low adhesion energy and ease of transfer is unexpected for an epitaxially grown film and may enable the study of bismuth's unique electronic and spintronic properties on arbitrary substrates. Moreover, this method suggests a route to integrate other group-V epitaxial films (i.e., phosphorus) with arbitrary substrates, as well as potentially to isolate bismuthene, the atomic thin-film limit of bismuth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA