Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 113(10): 1994-2005, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37311734

RESUMO

Grapevine leafroll disease (GLD) is a globally important disease that affects the metabolic composition and biomass of grapes, leading to a reduction in grape yield and quality of wine produced. Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causal agent for GLD. This study aimed to identify protein-protein interactions between GLRaV-3 and its host. A yeast two-hybrid (Y2H) library was constructed from Vitis vinifera mRNA and screened against GLRaV-3 open reading frames encoding structural proteins and those potentially involved in systemic spread and silencing of host defense mechanisms. Five interacting protein pairs were identified, three of which were demonstrated in planta. The minor coat protein of GLRaV-3 was shown to interact with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 02, a protein involved in primary carbohydrate metabolism and the biosynthesis of aromatic amino acids. Interactions were also identified between GLRaV-3 p20A and an 18.1-kDa class I small heat shock protein, as well as MAP3K epsilon protein kinase 1. Both proteins are involved in the response of plants to various stressors, including pathogen infections. Two additional proteins, chlorophyll a-b binding protein CP26 and a SMAX1-LIKE 6 protein, were identified as interacting with p20A in yeast but these interactions could not be demonstrated in planta. The findings of this study advance our understanding of the functions of GLRaV-3-encoded proteins and how the interaction between these proteins and those of V. vinifera could lead to GLD.


Assuntos
Closteroviridae , Vitis , Saccharomyces cerevisiae , Clorofila A , Doenças das Plantas , Closteroviridae/genética
2.
BMC Genomics ; 23(1): 793, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456909

RESUMO

BACKGROUND: Fruit flies (Diptera: Tephritidae) comprise species of agricultural and economic importance. Five such fruit fly species are known to affect commercial fruit production and export in South Africa: Ceratitis capitata, Ceratitis cosyra, Ceratitis rosa, Ceratitis quilicii, and Bactrocera dorsalis. Management practices for these pests include monitoring, application of pest control products, post-harvest disinfestation measures and inspection of consignments both prior to shipment and at ports of entry. In activities relating to monitoring and inspection, accurate identification of these pests to species level is required. While morphological keys for adult stages of these fruit fly species have been well developed, morphological keys for earlier life stages remain problematic. In instances where closely related species cannot be reliably distinguished morphologically, there is a need for molecular tools to assist in identifying these five fruit fly species during surveillance practices, where sequencing-based approaches would be beneficial. RESULTS: Two complete mitochondrial genomes were assembled for each fruit fly species investigated using high throughput sequencing data generated in this study. A single primer set was designed to amplify a region between tRNAile and tRNAmet. The amplicon consists of a partial segment of tRNAile, intergenic region I (tRNAile - tRNAgln), the complete sequence of tRNAgln, intergenic region II (tRNAgln - tRNAmet), and a partial segment of tRNAmet. PCR amplicons were generated for 20 specimens of each species, five of which were colony adult males, five colony larvae, and 10 wild, trap-collected specimens. Upon analysis of the amplicon, intergenic region I was identified as the most informative region, allowing for unambiguous identification of the five fruit fly species. The similarity in intergenic region II was too high between C. rosa and C. quilicii for accurate differentiation of these species. CONCLUSION: The identity of all five fruit flies investigated in this study can be determined through sequence analysis of the mitochondrial intergenic regions. Within the target amplicon, intergenic region I (tRNAile - tRNAgln) shows interspecific variation sufficient for species differentiation based on multiple sequence alignment. The variation in the length of intergenic region I is proposed as a potential tool for accurately identifying these five fruit flies in South Africa.


Assuntos
Tephritidae , Masculino , Animais , Tephritidae/genética , DNA Intergênico/genética , RNA de Transferência de Glutamina , África do Sul , RNA de Transferência de Isoleucina , RNA de Transferência de Metionina , Drosophila
3.
Phytopathology ; 112(1): 44-54, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34503351

RESUMO

It has been nearly 100 years since citrus growers in two distinct regions in the northern provinces of South Africa noticed unusual symptoms in their citrus trees, causing significant crop losses. They had no idea that these symptoms would later become part of an almost global pandemic of a disease called greening or huanglongbing (HLB). The rapid spread of the disease indicated that it might be caused by a transmissible pathogen, but it took >50 years to identify the causative agent as 'Candidatus Liberibacter africanus'. Recently, the disease appeared in more African countries, spreading by both infected planting material and Trioza erytreae. To date, five 'Ca. L. africanus' subspecies have been identified in various rutaceous species, with 'Ca. L. africanus subsp. clausenae' the only subspecies for which a biovar was detected in citrus. Efforts to detect and differentiate HLB-causing Liberibacter species are ongoing, and recent developments are discussed here. This review focuses on aspects of the African form of HLB, including its specific bacterial species and subspecies, its main insect vector, its geographic distribution, and current management strategies.


Assuntos
Citrus , Rhizobiaceae , Liberibacter , Doenças das Plantas , África do Sul
4.
Plant Dis ; 106(8): 2221-2227, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35037481

RESUMO

Citrus virus A (CiVA), a novel negative-sense single-stranded RNA virus assigned to the species Coguvirus eburi in the genus Coguvirus, was detected in South Africa with the use of high-throughput sequencing after its initial discovery in Italy. CiVA is closely related to citrus concave gum-associated virus (CCGaV), recently assigned to the species Citrus coguvirus. Disease association with CiVA is, however, incomplete. CiVA was detected in grapefruit (C. paradisi Macf.), sweet orange [C. sinensis (L.) Osb.], and clementine (C. reticulata Blanco) in South Africa, and a survey to determine the distribution, symptom association, and genetic diversity was conducted in three provinces and seven citrus production regions. The virus was detected in 'Delta' Valencia trees in six citrus production regions, and a fruit rind symptom was often observed on CiVA-positive trees. Additionally, grapefruit showing symptoms of citrus impietratura disease were positive for CiVA. This virus was primarily detected in older orchards that were established prior to the application of shoot tip grafting for virus elimination in the South African Citrus Improvement Scheme. The three viral-encoded genes of CiVA isolates from each cultivar and region were sequenced to investigate sequence diversity. Genetic differences were detected between the Delta Valencia, grapefruit, and clementine samples, with greater sequence variation observed with the nucleocapsid protein (NP) compared with the RNA-dependent RNA polymerase (RdRp) and the movement protein (MP). A real-time detection assay, targeting the RdRp, was developed to simultaneously detect citrus-infecting coguviruses, CiVA and CCGaV, using a dual priming reverse primer to improve PCR specificity.


Assuntos
Citrus , Vírus de RNA , Variação Genética , Doenças das Plantas , RNA Polimerase Dependente de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , África do Sul
5.
Virol J ; 18(1): 61, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752714

RESUMO

BACKGROUND: High-throughput sequencing (HTS) has been applied successfully for virus and viroid discovery in many agricultural crops leading to the current drive to apply this technology in routine pathogen detection. The validation of HTS-based pathogen detection is therefore paramount. METHODS: Plant infections were established by graft inoculating a suite of viruses and viroids from established sources for further study. Four plants (one healthy plant and three infected) were sampled in triplicate and total RNA was extracted using two different methods (CTAB extraction protocol and the Zymo Research Quick-RNA Plant Miniprep Kit) and sent for Illumina HTS. One replicate sample of each plant for each RNA extraction method was also sent for HTS on an Ion Torrent platform. The data were evaluated for biological and technical variation focussing on RNA extraction method, platform used and bioinformatic analysis. RESULTS: The study evaluated the influence of different HTS protocols on the sensitivity, specificity and repeatability of HTS as a detection tool. Both extraction methods and sequencing platforms resulted in significant differences between the data sets. Using a de novo assembly approach, complemented with read mapping, the Illumina data allowed a greater proportion of the expected pathogen scaffolds to be inferred, and an accurate virome profile was constructed. The complete virome profile was also constructed using the Ion Torrent data but analyses showed that more sequencing depth is required to be comparative to the Illumina protocol and produce consistent results. The CTAB extraction protocol lowered the proportion of viroid sequences recovered with HTS, and the Zymo Research kit resulted in more variation in the read counts obtained per pathogen sequence. The expression profiles of reference genes were also investigated to assess the suitability of these genes as internal controls to allow for the comparison between samples across different protocols. CONCLUSIONS: This study highlights the need to measure the level of variation that can arise from the different variables of an HTS protocol, from sample preparation to data analysis. HTS is more comprehensive than any assay previously used, but with the necessary validations and standard operating procedures, the implementation of HTS as part of routine pathogen screening practices is possible.


Assuntos
Citrus , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Vírus de Plantas , Viroides , Citrus/virologia , Vírus de Plantas/genética , Plantas/virologia , RNA , Viroides/genética
6.
Arch Virol ; 166(7): 2041-2044, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33900469

RESUMO

High-throughput sequencing (HTS) was used to construct the virome profile of an old grapevine-leafroll-diseased grapevine (Vitis vinifera). De novo assembly of HTS data showed a complex infection, including a virus sequence with similarity to viruses of the genus Badnavirus, family Caulimoviridae. The complete genome sequence of this virus consists of 7090 nucleotides and has four open reading frames (ORFs). Genome organisation and phylogenetic analysis identify this virus as a divergent variant of grapevine Roditis leaf discoloration-associated virus (GRLDaV) with 90% nucleotide sequence identity to isolate w4 (NC_027131). This is the first genome sequence of a South African variant of GRLDaV.


Assuntos
Badnavirus/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vitis/virologia , Vírus de DNA/genética , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA/métodos , África do Sul , Sequenciamento Completo do Genoma/métodos
7.
Plant Dis ; 105(2): 361-367, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748720

RESUMO

Determination of virus genomes and differentiation of strains and strain variants facilitate the linkage of biological expression to specific genetic units. For effective management of stem pitting disease of citrus tristeza virus (CTV) by cross-protection, an understanding of these links is necessary. The deliberate field application of a biological agent such as a virus first requires a thorough assessment of the long-term impact before it can be applied commercially. Three CTV sources were genetically characterized as different variants of the T68 strain, and their long-term effects on stem pitting and production were investigated. The different CTV sources were inoculated to 'Star Ruby' grapefruit trees and evaluated for a number of biological parameters in a field trial in the Limpopo Province of South Africa over a 10-year period. Significant differences were observed in stem pitting severity, impact on tree growth, yield, and the percentage of small fruit produced. These T68 variants were also associated with different stem pitting phenotypes. The variants differed in only 44 nucleotide positions across their genomes, and these minor genetic differences can therefore be used to identify possible genome regions affecting stem pitting.


Assuntos
Citrus paradisi , Citrus , Closterovirus , Doenças das Plantas , África do Sul
8.
J Gen Virol ; 101(4): 364-365, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32134375

RESUMO

Viruses in the family Closteroviridae have a mono-, bi- or tripartite positive-sense RNA genome of 13-19 kb, and non-enveloped, filamentous particles 650-2200 nm long and 12 nm in diameter. They infect plants, mainly dicots, many of which are fruit crops. This is a summary of the ICTV Report on the family Closteroviridae, which is available at ictv.global/report/closteroviridae.


Assuntos
Closteroviridae/genética , Closteroviridae/metabolismo , Closteroviridae/ultraestrutura , Genoma Viral , Filogenia , Vírion/genética , Vírion/ultraestrutura , Replicação Viral
9.
Arch Virol ; 165(6): 1511-1514, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32314061

RESUMO

High-throughput sequencing (HTS) was used to investigate ringspots on ivy (Hedera helix) leaves. De novo assembly of HTS data generated from a total RNA extract from these leaves yielded a contig with sequence similarity to viruses of the genus Badnavirus, family Caulimoviridae. The complete genome sequence of this virus consists of 8,885 nucleotides and has three open reading frames (ORFs). Genome organisation and phylogenetic analysis identifies this newly identified virus as a new member of the genus Badnavirus for which we propose the name "ivy ringspot-associated virus" (IRSaV).


Assuntos
Badnavirus/genética , Genoma Viral , Hedera/virologia , Doenças das Plantas/virologia , Badnavirus/classificação , Badnavirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma
10.
Phytopathology ; 110(8): 1476-1482, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32264738

RESUMO

Over the past 2 decades, fruit symptoms resembling a marbling pattern on the fruit skin or corking of the fruit flesh were observed on Japanese plums in South Africa, resulting in unmarketable fruit. The ability of high-throughput sequencing (HTS) to detect known and unknown pathogens was exploited by assaying affected and unaffected fruit tree accessions to identify the potential aetiological agent of marbling and/or corky flesh disease. In this study, it is shown that the disease is associated with a previously undescribed small RNA with typical viroid structural features. The potential viroid was the only pathological agent consistently detected in all symptomatic trees by HTS, and the association with the symptoms was confirmed in field surveys over two seasons. To date, this RNA was not detectable by RT-PCR in seedlings raised from seeds collected from infected trees. Although the autonomous replication of this viroid-like RNA was not proven, it was shown to be transmissible by grafting and associated with a range of symptoms that include marbling on the fruit skin, corky flesh, reduced fruit size, irregular shape, and uneven fruit surface depending on the cultivar. Moreover, the circular RNA genome, consisting of 317 nucleotides, strongly supports that this viroid-like RNA is most likely a viroid for which the name plum viroid I (PVd-I) is proposed. The primary structure of this viroid showed a less than 90% nucleotide sequence identity to viroids of the genus Apscaviroid, with which it has close phylogenetic relationships and shares conserved structural motifs.


Assuntos
Prunus domestica , Viroides/genética , Filogenia , Doenças das Plantas , RNA Viral , África do Sul
11.
Plant Dis ; 104(9): 2362-2368, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689882

RESUMO

Two isolates of the T68 genotype of citrus tristeza virus (CTV) were derived from a common source, GFMS12, by single aphid transmission. These isolates, named GFMS12-8 and GFMS12-1.3, induced stem pitting with differing severity in 'Duncan' grapefruit (Citrus × paradisi [Macfad.]). Full-genome sequencing of these isolates showed only minor nucleotide sequence differences totaling 45 polymorphisms. Numerous nucleotide changes, in relatively close proximity, were detected in the p33 open reading frame (ORF) and the leader protease domains of ORF1a. This is the first report of full-genome characterization of CTV isolates of a single genotype, derived from the same source, but showing differences in pathogenicity. The results demonstrate the development of intragenotype heterogeneity known to occur with single-stranded RNA viruses. Identification of genetic variability between isolates showing different pathogenicity will enable interrogation of specific genome regions for potential stem pitting determinants.


Assuntos
Citrus paradisi , Citrus , Animais , Closterovirus , Genótipo , Filogenia , Doenças das Plantas
12.
Phytopathology ; 109(3): 488-497, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30070618

RESUMO

Recent developments in high-throughput sequencing (HTS), also called next-generation sequencing (NGS), technologies and bioinformatics have drastically changed research on viral pathogens and spurred growing interest in the field of virus diagnostics. However, the reliability of HTS-based virus detection protocols must be evaluated before adopting them for diagnostics. Many different bioinformatics algorithms aimed at detecting viruses in HTS data have been reported but little attention has been paid thus far to their sensitivity and reliability for diagnostic purposes. Therefore, we compared the ability of 21 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 12 plant viruses through a double-blind large-scale performance test using 10 datasets of 21- to 24-nucleotide small RNA (sRNA) sequences from three different infected plants. The sensitivity of virus detection ranged between 35 and 100% among participants, with a marked negative effect when sequence depth decreased. The false-positive detection rate was very low and mainly related to the identification of host genome-integrated viral sequences or misinterpretation of the results. Reproducibility was high (91.6%). This work revealed the key influence of bioinformatics strategies for the sensitive detection of viruses in HTS sRNA datasets and, more specifically (i) the difficulty in detecting viral agents when they are novel or their sRNA abundance is low, (ii) the influence of key parameters at both assembly and annotation steps, (iii) the importance of completeness of reference sequence databases, and (iv) the significant level of scientific expertise needed when interpreting pipeline results. Overall, this work underlines key parameters and proposes recommendations for reliable sRNA-based detection of known and unknown viruses.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas , Biologia Computacional , Método Duplo-Cego , Reprodutibilidade dos Testes
13.
Planta ; 248(2): 477-488, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777364

RESUMO

MAIN CONCLUSION: Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Flavinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinorhizobium meliloti/genética , Acetatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Biomassa , Divisão Celular/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Flavinas/genética , Flavinas/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
14.
Arch Virol ; 163(9): 2491-2496, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29796924

RESUMO

The impact of recombination on variant classification and the use of different genomic regions to identify virus variants were investigated using a diversity study performed on grapevine rupestris stem pitting-associated virus (GRSPaV). Three surveys were conducted to investigate the genetic diversity of GRSPaV and to compare the ability of the GRSPaV coat protein and replicase domains to classify virus variants. GRSPaV variants identified in the surveys clustered into five of the six currently recognised lineages, and a seventh, previously unclassified lineage was detected. A correlation was observed between the detection of recombinant GRSPaV sequences and inconsistencies in classification when using different genome regions for analysis.


Assuntos
Proteínas do Capsídeo/genética , Flexiviridae/genética , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Vitis/virologia , Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Variação Genética , Filogenia , Folhas de Planta/virologia , Recombinação Genética , Análise de Sequência de DNA
15.
Virol J ; 14(1): 200, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058618

RESUMO

BACKGROUND: Small RNA (sRNA) associated gene regulation has been shown to play a significant role during plant-pathogen interaction. In commercial citrus orchards co-infection of Citrus tristeza virus (CTV) and viroids occur naturally. METHODS: A next-generation sequencing-based approach was used to study the sRNA and transcriptional response in grapefruit to the co-infection of CTV and Citrus dwarfing viroid. RESULTS: The co-infection resulted in a difference in the expression of a number of sRNA species when comparing healthy and infected plants; the majority of these were derived from transcripts processed in a phased manner. Several RNA transcripts were also differentially expressed, including transcripts derived from two genes, predicted to be under the regulation of sRNAs. These genes are involved in plant hormone systems; one in the abscisic acid, and the other in the cytokinin regulatory pathway. Additional analysis of virus- and viroid-derived small-interfering RNAs (siRNAs) showed areas on the pathogen genomes associated with increased siRNA synthesis. Most interestingly, the starting position of the p23 silencing suppressor's sub-genomic RNA generated a siRNA hotspot on the CTV genome. CONCLUSIONS: This study showed the involvement of various genes, as well as endogenous and exogenous RNA-derived sRNA species in the plant-defence response. The results highlighted the role of sRNA-directed plant hormone regulation during biotic stress, as well as a counter-response of plants to virus suppressors of RNA-silencing.


Assuntos
Citrus paradisi/genética , Citrus paradisi/virologia , Closterovirus , Coinfecção , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Transcriptoma , Viroides , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
16.
Arch Virol ; 162(4): 987-996, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025711

RESUMO

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs (sRNA) that play an essential role in the regulation of target mRNAs expressed during plant development and in response to stress. MicroRNA expression profiling has helped to identify miRNAs that regulate a range of processes, including the plant's defence response to pathogens. In this study, differential miRNA expression in own-rooted Vitis vinifera cv. Cabernet Sauvignon plants infected with grapevine leafroll-associated virus 3 was investigated with microarrays and next-generation sequencing (NGS) of sRNA and mRNA. These high-throughput approaches identified several differentially expressed miRNAs. Four miRNAs, identified by both approaches, were validated by stemloop RT-PCRs. Three of the predicted targets of the differentially expressed miRNAs were also differentially expressed in the transcriptome data of infected plants, and were validated by RT-qPCR. Identification of these miRNAs and their targets can lead to a better understanding of host-pathogen interactions involved in grapevine leafroll disease and the identification of possible targets for virus resistance.


Assuntos
Closteroviridae/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , RNA de Plantas/metabolismo , Vitis/metabolismo , Closteroviridae/genética , Closteroviridae/isolamento & purificação , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Vitis/genética , Vitis/virologia
17.
Biotechnol Lett ; 39(1): 171-178, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27695982

RESUMO

OBJECTIVES: To enable analysis and comparisons of different relative quantitation experiments, a web-browser application called Harbin was created that uses a quantile-based scoring system for the comparison of samples at different time points and between experiments. RESULTS: Harbin uses the standard curve method for relative quantitation to calculate concentration ratios (CRs). To evaluate if different datasets can be combined the Harbin quantile bootstrap test is proposed. This test is more sensitive in detecting distributional differences between data sets than the Kolmogorov-Smirnov test. The utility of the test is demonstrated in a comparison of three grapevine leafroll associated virus 3 (GLRaV-3) RT-qPCR data sets. CONCLUSIONS: The quantile-based scoring system of CRs will enable the monitoring of virus titre or gene expression over different time points and be useful in other genomic applications where the combining of data sets are required.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Software
18.
Virol J ; 13: 85, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250973

RESUMO

BACKGROUND: The use of next-generation sequencing has become an established method for virus detection. Efficient study design for accurate detection relies on the optimal amount of data representing a significant portion of a virus genome. FINDINGS: In this study, genome coverage at different sequencing depths was determined for a number of viruses, viroids, hosts and sequencing library types, using both read-mapping and de novo assembly-based approaches. The results highlighted the strength of ribo-depleted RNA and sRNA in obtaining saturated genome coverage with the least amount of data, while even though the poly(A)-selected RNA yielded virus-derived reads, it was insufficient to cover the complete genome of a non-polyadenylated virus. The ribo-depleted RNA data also outperformed the sRNA data in terms of the percentage of coverage that could be obtained particularly with the de novo assembled contigs. CONCLUSION: Our results suggest the use of ribo-depleted RNA in a de novo assembly-based approach for the detection of single-stranded RNA viruses. Furthermore, we suggest that sequencing one million reads will provide sufficient genome coverage specifically for closterovirus detection.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Análise de Sequência de DNA/métodos , Viroides/classificação , Viroides/isolamento & purificação , Vírus de RNA/genética , Viroides/genética
19.
Plant Dis ; 100(11): 2251-2256, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30682917

RESUMO

Citrus tristeza virus (CTV) is endemic to southern Africa and the stem pitting syndrome that it causes was a limiting factor in grapefruit production prior to the introduction of cross-protection in the Citrus Improvement Scheme. This disease mitigation strategy, using various field-derived CTV sources, has significantly extended the productive lifespan of grapefruit orchards in South Africa. CTV commonly occurs as a population of various strains, masking the phenotypic effect of individual strains. Likewise, current South African CTV cross-protection sources are strain mixtures, obscuring an understanding of which strains are influencing cross-protection. The severity of various CTV strains has mostly been assessed on sensitive indicator hosts, but their effect on commercial varieties has seldom been investigated. Single-variant CTV isolates were used to investigate the phenotypic expression of CTV strains in commercial grapefruit varieties as well as CTV indicator hosts. They were biologically characterized for their ability to cause stem pitting and their rate of translocation and titer in the different hosts, monitored by enzyme-linked immunosorbent assay. Complete genome sequences for three CTV strain variants were generated. Isolates of CTV strains VT, T68, RB, and HA16-5 did not induce severe stem pitting in four grapefruit hosts in a glasshouse trial. Viral titers of the strains differed in the grapefruit hosts, but the RB isolate reached a higher titer in the grapefruit hosts compared with the VT, T68, and HA16-5 isolates. Additionally, horticultural assessment of two grapefruit varieties inoculated with the RB isolate in two field trials demonstrated that mild stem pitting did not negatively influence the horticultural performance of the grapefruit trees over an eight-year assessment period. 'Star Ruby' trees containing the CTV source GFMS35 showed less stem pitting than trees inoculated with the RB isolate, but had smaller canopy volumes and lower yields than trees containing the RB isolate. This suggests that the influence of CTV sources on tree performance is not limited to the effect of stem pitting.

20.
Arch Virol ; 160(8): 2125-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031616

RESUMO

The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).


Assuntos
Flexiviridae/genética , Flexiviridae/isolamento & purificação , Doenças das Plantas/virologia , Vitis/virologia , Flexiviridae/classificação , Variação Genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de RNA , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA