RESUMO
BACKGROUND: Realistic reconstruction of the in vivo human atherosclerotic environment requires the coculture of different cell types arranged in atherosclerotic vessel-like structures with exposure to flow and circulating cells, presenting challenges for disease modeling. This study aimed to develop a 3-dimensional tubular microfluidic model with quadruple coculture of human aortic smooth muscle cells, human umbilical cord vein endothelial cells, and foam cells to recreate a complex human atherosclerotic vessel in vitro to study the effects of flow and circulating immune cells. METHODS: We developed a coculture protocol utilizing BFP (blue fluorescent protein)-labeled human aortic smooth muscle cells, GFP (green fluorescent protein)-labeled human umbilical cord vein endothelial cells, and THP-1 macrophage-derived, Dil-labeled oxidized LDL (low-density lipoprotein) foam cells within a fibrinogen/collagen I-based 3-dimensional ECM (extracellular matrix). Perfusion experiments were conducted for 24 hours on both atherosclerotic vessels and healthy vessels (BFP-labeled human aortic smooth muscle cells and GFP-labeled human umbilical cord vein endothelial cells without foam cells). Additionally, perfusion with circulating THP-1 monocytes was performed to observe cell extravasation and recruitment. RESULTS: The resulting vessels displayed early lesion morphology, with a layered composition including an endothelium and media, and foam cells accumulating in the subendothelial space. The layered wall composition of both atherosclerotic and healthy vessels remained stable under perfusion. Circulating THP-1 monocytes demonstrated cell extravasation into the atherosclerotic vessel wall and recruitment to the foam cell core. The qPCR analysis indicated increased expression of atherosclerosis markers in the atherosclerotic vessels and adaptation of vascular smooth muscle cell migration in response to flow and the plaque microenvironment, compared with control vessels. CONCLUSIONS: The human 3-dimensional atherosclerosis model demonstrated stability under perfusion and allowed for the observation of immune cell behavior, providing a valuable tool for the atherosclerosis research field.
RESUMO
Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel's elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young's modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young's modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types. Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.
Assuntos
Células-Tronco Pluripotentes Induzidas , Músculo Liso Vascular , Humanos , Músculo Liso Vascular/metabolismo , Hidrogéis/química , Diferenciação Celular , Adaptação FisiológicaRESUMO
Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFß signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production.