Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 70(5): 375-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683683

RESUMO

Despite tremendous gains in the molecular understanding of exocrine pancreatic cancer, the prognosis for this disease remains very poor, largely because of delayed disease detection and limited effectiveness of systemic therapies. Both incidence rates and mortality rates for pancreatic cancer have increased during the past decade, in contrast to most other solid tumor types. Recent improvements in multimodality care have substantially improved overall survival, local control, and metastasis-free survival for patients who have localized tumors that are amenable to surgical resection. The widening gap in prognosis between patients with resectable and unresectable or metastatic disease reinforces the importance of detecting pancreatic cancer sooner to improve outcomes. Furthermore, the developing use of therapies that target tumor-specific molecular vulnerabilities may offer improved disease control for patients with advanced disease. Finally, the substantial morbidity associated with pancreatic cancer, including wasting, fatigue, and pain, remains an under-addressed component of this disease, which powerfully affects quality of life and limits tolerance to aggressive therapies. In this article, the authors review the current multidisciplinary standards of care in pancreatic cancer with a focus on emerging concepts in pancreatic cancer detection, precision therapy, and survivorship.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Equipe de Assistência ao Paciente , Carcinoma Ductal Pancreático/mortalidade , Quimioterapia Adjuvante , Tomada de Decisão Clínica , Ensaios Clínicos como Assunto , Detecção Precoce de Câncer , Predisposição Genética para Doença , Humanos , Estadiamento de Neoplasias , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Pancreatectomia , Neoplasias Pancreáticas/mortalidade , Radioterapia Adjuvante , Fatores de Risco , Padrão de Cuidado
2.
Mol Cell ; 72(6): 985-998.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30415949

RESUMO

Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepatócitos/enzimologia , Insulina/metabolismo , Sirtuína 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Alostérica , Animais , Sítios de Ligação , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HCT116 , Hepatócitos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Sirtuína 1/genética , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética
3.
Small ; 20(4): e2306270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702136

RESUMO

Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.


Assuntos
Colite , Quinases Associadas a Receptores de Interleucina-1 , Camundongos , Animais , Quinases Associadas a Receptores de Interleucina-1/química , Citocinas , Inflamação/tratamento farmacológico , Edema
4.
Brain Behav Immun ; 118: 275-286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447884

RESUMO

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Assuntos
Doenças Neuroinflamatórias , Neoplasias Pancreáticas , Camundongos , Animais , Encéfalo , Inflamação , Hipocampo
5.
Mol Ther ; 31(10): 2975-2990, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37644723

RESUMO

Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.


Assuntos
Estudo de Associação Genômica Ampla , Nanopartículas , Animais , Camundongos , Distribuição Tecidual , Córtex Pré-Frontal , RNA , RNA Mensageiro , RNA Interferente Pequeno
6.
Small ; : e2301776, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37518857

RESUMO

Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.

7.
Qual Life Res ; 32(1): 209-223, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36056191

RESUMO

PURPOSE: To explore symptoms and disease impacts of Crohn's disease and to develop a new patient-reported outcomes (PRO) measure according to industry best practices. METHODS: A conceptual model of relevant symptoms experienced by patients with Crohn's disease was developed following a literature review. Three rounds of combined qualitative semi-structured concept elicitation and cognitive debriefing interviews with 36 patients (≥ 16 years) with Crohn's disease and 4 clinicians were conducted to further explore the most commonly reported and most bothersome symptoms to patients. Interview results were used to update the conceptual model as well as items and response options included in The Crohn's Disease Diary, a new PRO measure. RESULTS: All patients (N = 36) reported abdominal pain, loose or liquid bowel movements, and high or increased frequency of bowel movements, with most reporting these symptoms spontaneously (100%, 92%, and 75%, respectively). All patients reported bowel movement urgency, but 61% reported this symptom only when probed. Most also reported that symptoms impacted activities of daily living, work/school, and emotional, social, and physical functioning (overall, 78%-100%; spontaneously, 79% - 92%). Data regarding core symptoms of Crohn's disease from clinician concept elicitation interviews supported patient data. The 17-item Crohn's Disease Diary assesses core symptoms and impacts of Crohn's disease over 24 h, and extraintestinal manifestations over 7 days. The content validity of the diary was confirmed during cognitive debriefing interviews. CONCLUSION: The Crohn's Disease Diary is a new PRO measure for the assessment of Crohn's disease symptoms and impacts, developed according to industry best practices.


Assuntos
Doença de Crohn , Humanos , Atividades Cotidianas , Qualidade de Vida/psicologia , Pesquisa Qualitativa , Dor Abdominal
8.
EMBO J ; 37(2): 201-218, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29196303

RESUMO

Whole chromosome gains or losses (aneuploidy) are a hallmark of ~70% of human tumors. Modeling the consequences of aneuploidy has relied on perturbing spindle assembly checkpoint (SAC) components, but interpretations of these experiments are clouded by the multiple functions of these proteins. Here, we used a Cre recombinase-mediated chromosome loss strategy to individually delete mouse chromosomes 9, 10, 12, or 14 in tetraploid immortalized murine embryonic fibroblasts. This methodology also involves the generation of a dicentric chromosome intermediate, which subsequently undergoes a series of breakage-fusion-bridge (BFB) cycles. While the aneuploid cells generally display a growth disadvantage in vitro, they grow significantly better in low adherence sphere-forming conditions and three of the four lines are transformed in vivo, forming large and invasive tumors in immunocompromised mice. The aneuploid cells display increased chromosomal instability and DNA damage, a mutator phenotype associated with tumorigenesis in vivo Thus, these studies demonstrate a causative role for whole chromosome loss and the associated BFB-mediated instability in tumorigenesis and may shed light on the early consequences of aneuploidy in mammalian cells.


Assuntos
Deleção Cromossômica , Cromossomos de Mamíferos , Fibroblastos/metabolismo , Neoplasias Experimentais , Tetraploidia , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Fibroblastos/patologia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
9.
Small ; 18(44): e2204436, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098251

RESUMO

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Folistatina/metabolismo , Folistatina/farmacologia , Folistatina/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/terapia , Músculo Esquelético/metabolismo
10.
Magn Reson Med ; 87(5): 2464-2480, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34958685

RESUMO

PURPOSE: To evaluate the safety of MRI in patients with fragmented retained leads (FRLs) through numerical simulation and phantom experiments. METHODS: Electromagnetic and thermal simulations were performed to determine the worst-case RF heating of 10 patient-derived FRL models during MRI at 1.5 T and 3 T and at imaging landmarks corresponding to head, chest, and abdomen. RF heating measurements were performed in phantoms implanted with reconstructed FRL models that produced highest heating in numerical simulations. The potential for unintended tissue stimulation was assessed through a conservative estimation of the electric field induced in the tissue due to gradient-induced voltages developed along the length of FRLs. RESULTS: In simulations under conservative approach, RF exposure at B1+ ≤ 2 µT generated cumulative equivalent minutes (CEM)43 < 40 at all imaging landmarks at both 1.5 T and 3 T, indicating no thermal damage for acquisition times (TAs) < 10 min. In experiments, the maximum temperature rise when FRLs were positioned at the location of maximum electric field exposure was measured to be 2.4°C at 3 T and 2.1°C at 1.5 T. Electric fields induced in the tissue due to gradient-induced voltages remained below the threshold for cardiac tissue stimulation in all cases. CONCLUSIONS: Simulation and experimental results indicate that patients with FRLs can be scanned safely at both 1.5 T and 3 T with most clinical pulse sequences.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Coração/diagnóstico por imagem , Calefação , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
11.
J Neuroinflammation ; 18(1): 209, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530852

RESUMO

BACKGROUND: Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. METHODS: TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. RESULTS: In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. CONCLUSION: TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7's neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7's primary role in neuronal tissues is not related to antiviral immunity.


Assuntos
Gânglios Espinais/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/biossíntese , Neuroglia/metabolismo , Células Receptoras Sensoriais/metabolismo , Receptor 7 Toll-Like/biossíntese , Animais , Feminino , Gânglios Espinais/ultraestrutura , Expressão Gênica , Cobaias , Macrófagos/ultraestrutura , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Receptor 7 Toll-Like/genética
12.
J Cardiovasc Electrophysiol ; 32(8): 2097-2104, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34191371

RESUMO

INTRODUCTION: Obesity is an established risk factor for recurrent atrial fibrillation (AF) after ablation. The impact of pre-procedure weight changes on freedom from AF (FFAF) after ablation in obese and nonobese patients is unknown. METHODS: A single-center retrospective cohort study of patients undergoing pulmonary vein isolation was performed. Before ablation, all candidates were encouraged to adopt healthy lifestyle habits according to American Heart Association guidelines, including weight loss, by their physician. The primary endpoint was FFAF through 1-year after completion of the 3-month blanking period. RESULTS: Of the 601 patients (68% male; average age 62.1 ± 10.3 years) included in analysis, 234 patients (38.9%) were obese (body mass index ≥ 30) and 315 (52.4%) had paroxysmal AF. FFAF was observed in 420 patients (69.9%) at 15 months. Percent change in weight that occurred during the year before ablation independently predicted FFAF through 15-months in all patients (adjusted odds ratio = 1.17, 95% confidence interval: 1.11-1.23). Subgroup analyses based on paroxysmal vs persistent AF, presence of obesity, and history of prior ablation were performed. Percent change in weight over the year before ablation was independently associated with FFAF in all subgroups except nonobese patients with persistent AF. CONCLUSION: Pre-ablation weight loss was associated with FFAF in both obese and nonobese patients. Further studies are needed to define the optimal approach to weight loss before AF ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Veias Pulmonares , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Veias Pulmonares/cirurgia , Recidiva , Estudos Retrospectivos , Resultado do Tratamento , Redução de Peso
13.
Brain Behav Immun ; 97: 102-118, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245812

RESUMO

Lipocalin 2 (LCN2) is a pleiotropic molecule that is induced in the central nervous system (CNS) in several acute and chronic pathologies. The acute induction of LCN2 evolved as a beneficial process, aimed at combating bacterial infection through the sequestration of iron from pathogens, while the role of LCN2 during chronic, non-infectious disease remains unclear, and recent studies suggest that LCN2 is neurotoxic. However, whether LCN2 is sufficient to induce behavioral and cognitive alterations remains unclear. In this paper, we sought to address the role of cerebral LCN2 on cognition in both acute and chronic settings. We demonstrate that LCN2 is robustly induced in the CNS during both acute and chronic inflammatory conditions, including LPS-based sepsis and cancer cachexia. In vivo, LPS challenge results in a global induction of LCN2 in the central nervous system, while cancer cachexia results in a distribution specific to the vasculature. Similar to these in vivo observations, in vitro modeling demonstrated that both glia and cerebral endothelium produce and secrete LCN2 when challenged with LPS, while only cerebral endothelium secrete LCN2 when challenged with cancer-conditioned medium. Chronic, but not short-term, cerebral LCN2 exposure resulted in reduced hippocampal neuron staining intensity, an increase in newborn neurons, microglial activation, and increased CNS immune cell infiltration, while gene set analyses suggested these effects were mediated through melanocortin-4 receptor independent mechanisms. RNA sequencing analyses of primary hippocampal neurons revealed a distinct transcriptome associated with prolonged LCN2 exposure, and ontology analysis was suggestive of altered neurite growth and abnormal spatial learning. Indeed, LCN2-treated hippocampal neurons display blunted neurite processes, and mice exposed to prolonged cerebral LCN2 levels experienced a reduction in spatial reference memory as indicated by Y-maze assessment. These findings implicate LCN2 as a pathologic mediator of cognitive decline in the setting of chronic disease.


Assuntos
Disfunção Cognitiva , Neurônios , Animais , Hipocampo/metabolismo , Lipocalina-2 , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo
14.
EMBO Rep ; 20(7): e47546, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267709

RESUMO

Progressive remodeling of the bone marrow microenvironment is recognized as an integral aspect of leukemogenesis. Expanding acute myeloid leukemia (AML) clones not only alter stroma composition, but also actively constrain hematopoiesis, representing a significant source of patient morbidity and mortality. Recent studies revealed the surprising resistance of long-term hematopoietic stem cells (LT-HSC) to elimination from the leukemic niche. Here, we examine the fate and function of residual LT-HSC in the BM of murine xenografts with emphasis on the role of AML-derived extracellular vesicles (EV). AML-EV rapidly enter HSC, and their trafficking elicits protein synthesis suppression and LT-HSC quiescence. Mechanistically, AML-EV transfer a panel of miRNA, including miR-1246, that target the mTOR subunit Raptor, causing ribosomal protein S6 hypo-phosphorylation, which in turn impairs protein synthesis in LT-HSC. While HSC functionally recover from quiescence upon transplantation to an AML-naive environment, they maintain relative gains in repopulation capacity. These phenotypic changes are accompanied by DNA double-strand breaks and evidence of a sustained DNA-damage response. In sum, AML-EV contribute to niche-dependent, reversible quiescence and elicit persisting DNA damage in LT-HSC.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Nicho de Células-Tronco , Animais , Linhagem Celular Tumoral , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Proteína S6 Ribossômica/genética
15.
Glia ; 68(7): 1479-1494, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32039522

RESUMO

Microglia in the mediobasal hypothalamus (MBH) respond to inflammatory stimuli and metabolic perturbations to mediate body composition. This concept is well studied in the context of high fat diet induced obesity (HFDO), yet has not been investigated in the context of cachexia, a devastating metabolic syndrome characterized by anorexia, fatigue, and muscle catabolism. We show that microglia accumulate specifically in the MBH early in pancreatic ductal adenocarcinoma (PDAC)-associated cachexia and assume an activated morphology. Furthermore, we observe astrogliosis in the MBH and hippocampus concurrent with cachexia initiation. We next show that circulating immune cells resembling macrophages infiltrate the MBH. PDAC-derived factors induced microglia to express a transcriptional profile in vitro that was distinct from that induced by lipopolysaccharide (LPS). Microglia depletion through CSF1-R antagonism resulted in accelerated cachexia onset and increased anorexia, fatigue, and muscle catabolism during PDAC. This corresponded with increased hypothalamic-pituitary-adrenal (HPA) axis activation. CSF1-R antagonism had little effect on inflammatory response in the circulation, liver, or tumor. These findings demonstrate that microglia are protective against PDAC cachexia and provide mechanistic insight into this function.


Assuntos
Caquexia/metabolismo , Hipotálamo/metabolismo , Microglia/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Caquexia/imunologia , Metabolismo Energético/fisiologia , Gliose/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Obesidade/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
16.
Opt Express ; 27(24): 35631-35645, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878732

RESUMO

We propose and experimentally demonstrate a polarization-selective waveguide hologram at optical wavelengths, based on an all-dielectric metamaterial multilayer system. We show that two spatially separated or overlapped holographic images can be produced with two orthogonally polarized beams, incorporated into a binary computer generated hologram (CGH). These two images can be combined into a single 3D stereoscopic image observable using linearly or circularly polarized glasses. The two polarized beams can also be utilized to construct radially and azimuthally polarized "vortex" beams. The fundamental and first higher-order TM and TE modes of an optical waveguide are used to guide the two polarization states with distinct propagation constants. The two guided waves act as spatially distinct reference waves such that the integrated, on-chip hologram can distinguish the two and provide two independent images corresponding to the two polarizations. Polarization selective waveguide holograms can be used in a diverse set of applications, from chip-scale displays and augmented reality (AR) to optical trapping.

17.
Opt Express ; 27(5): 6512-6527, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876235

RESUMO

A fundamental challenge has plagued computer-generated volumetric holography since its inception: design methods are available only in the perturbative limit, but this poses serious limitations on efficiency and the amount of multiplexing achievable. Given the recent progress in highly tailorable artificial media, such as metamaterials, the need for general and robust design techniques grows. We present a method based on the electromagnetic variational principle that applies to media that can be described as collections of point dipoles, as most metamaterials are. We demonstrate its efficacy by designing highly efficient, non-perturbative, multiplexing devices.

18.
Brain Behav Immun ; 82: 338-353, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499172

RESUMO

Toll-like receptors 7 and 8 (TLR7 and TLR8) are endosomal pattern recognition receptors that detect a variety of single-stranded RNA species. While TLR7/8 agonists have robust therapeutic potential, clinical utility of these agents is limited by sickness responses associated with treatment induction. To understand the kinetics and mechanism of these responses, we characterized the acute and chronic effects of TLR7 stimulation. Single-cell RNA-sequencing studies, RNAscope, and radiolabeled in situ hybridization demonstrate that central nervous system gene expression of TLR7 is exclusive to microglia. In vitro studies demonstrate that microglia are highly sensitive to TLR7 stimulation, and respond in a dose-dependent manner to the imidazoquinoline R848. In vivo, both intraperitoneal (IP) and intracerebroventricular (ICV) R848 induce acute sickness responses including hypophagia, weight loss, and decreased voluntary locomotor activity, associated with increased CNS pro-inflammatory gene expression and changes to glial morphology. However, chronic daily IP R848 resulted in rapid tachyphylaxis of behavioral and molecular manifestations of illness. In microglial in vitro assays, pro-inflammatory transcriptional responses rapidly diminished in the context of repeated R848. In addition to TLR7 desensitization, we found that microglia become partially refractory to lipopolysaccharide (LPS) following R848 pretreatment, associated with induction of negative regulators A20 and Irak3. Similarly, mice pre-treated with R848 demonstrate reduced sickness responses, hypothalamic inflammation, and hepatic inflammation in response to LPS. These data combined demonstrate that TLR7 stimulation induces acute behavioral and molecular evidence of sickness responses. Following prolonged dosing, R848 induces a refractory state to both TLR7 and TLR4 activation, consistent with induced immune tolerance.


Assuntos
Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/imunologia , Microglia/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Animais , Comportamento Animal , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Citocinas/imunologia , Feminino , Imidazóis/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taquifilaxia/imunologia , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/imunologia
19.
J Opt Soc Am A Opt Image Sci Vis ; 36(5): 930-935, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045023

RESUMO

We show that Holevo's inequality upper-bounds the information capacity of a volume hologram without requiring a specification of the implementation of the hologram or the measurements to be made on the field scattered by the hologram. We find that, in the weakly scattering limit, the information capacity is not determined by the number of possible configurations of the holographic medium but only by the specification of the incident fields in the medium volume, which are determined at the volume boundary. By treating a volume hologram as a quantum communication channel, we establish a correspondence between the reconstruction of a hologram with multiple incident and scattered waves and the measurement of a quantum state with an operator-valued measure. We determine a bound on the probability of communications error, which describes the degree to which the incident fields may be distinguished by measurements of the scattered waves or, in other words, the crosstalk between the incident fields.

20.
Semin Cell Dev Biol ; 54: 42-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541482

RESUMO

When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes.


Assuntos
Caquexia/complicações , Caquexia/patologia , Hipotálamo/patologia , Inflamação/complicações , Inflamação/patologia , Animais , Humanos , Modelos Biológicos , Músculo Esquelético/patologia , Obesidade/complicações , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA