Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(7): e270-e278, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128917

RESUMO

BACKGROUND: Autosomal dominant hypercholesterolemia (ADH) is due to deleterious variants in LDLR, APOB, or PCSK9 genes. Double heterozygote for these genes induces a more severe phenotype. More recently, a new causative variant of heterozygous ADH was identified in APOE. Here we study the phenotype of 21 adult patients, double heterozygotes for rare LDLR and rare APOE variants (LDLR+APOE) in a national wide French cohort. METHODS: LDLR, APOB, PCSK9, and APOE genes were sequenced in 5743 probands addressed for ADH genotyping. The lipid profile and occurrence of premature atherosclerotic cardiovascular diseases were compared between the LDLR+APOE carriers (n=21) and the carriers of the same LDLR causative variants alone (n=22). RESULTS: The prevalence of LDLR+APOE carriers in this French ADH cohort is 0.4%. Overall, LDL (low-density lipoprotein)-cholesterol concentrations were 23% higher in LDLR+APOE patients than in LDLR patients (9.14±2.51 versus 7.43±1.59 mmol/L, P=0.0221). When only deleterious or probably deleterious variants were considered, the LDL-cholesterol concentrations were 46% higher in LDLR+APOE carriers than in LDLR carriers (10.83±3.45 versus 7.43±1.59 mmol/L, P=0.0270). Two patients exhibited a homozygous familial hypercholesterolemia phenotype (LDL-cholesterol >13 mmol/L). Premature atherosclerotic cardiovascular disease was more common in LDLR+APOE patients than in LDLR carriers (70% versus 30%, P=0.026). CONCLUSIONS: Although an incomplete penetrance should be taken into account for APOE variant classification, these results suggest an additive effect of deleterious APOE variants on ADH phenotype highlighting the relevance of APOE sequencing.


Assuntos
Aterosclerose , Hiperlipoproteinemia Tipo II , Humanos , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , LDL-Colesterol , Fenótipo , Aterosclerose/epidemiologia , Aterosclerose/genética , Apolipoproteínas B/genética , Apolipoproteínas E/genética , Mutação , Heterozigoto
2.
Clin Chem Lab Med ; 62(2): 270-279, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37678263

RESUMO

OBJECTIVES: Low-density lipoprotein cholesterol (LDL-C) concentration was calculated for many years using the Friedewald equation, but those from Sampson and extended-Martin-Hopkins perform differently. Their accuracy in fasting hypertriglyceridemia and non-fasting state were compared and the clinical impact of implementing these equations on risk classification and on the setting of lipid treatment goals was assessed. METHODS: Seven thousand six standard lipid profiles and LDL-C concentrations measured after ultracentrifugation (uLDL-C) were retrospectively included. uLDL-C were compared to calculated LDL-C in terms of correlation, root mean square error, residual error, mean absolute deviations and cardiovascular stratification. RESULTS: In fasting state (n=5,826), Sampson equation was the most accurate, exhibited the highest percentage of residual error lower than 0.13 mmol/L (67 vs. 57 % and 63 % using Friedewald, or extended-Martin-Hopkins equations respectively) and the lowest misclassification rate. However, the superiority of this equation was less pronounced when triglyceride concentration (TG) <4.5 mmol/L were considered. In post-prandial state (n=1,180), extended-Martin-Hopkins was the most accurate equation, exhibited the highest percentage of residual error lower than 0.13 mmol/L (73 vs. 39 % and 57 % using Friedewald and Sampson equation respectively). Overall, the negative bias with Sampson equation may lead to undertreatment. Conversely, a positive bias was observed with extended Martin-Hopkins. CONCLUSIONS: None of the equations tested are accurate when TG>4.52 mmol/L. When TG<4.52 mmol/L both Sampson and Martin-Hopkins equations performed better than Friedewald. The switch to one or the other should take in account their limitations, their ease of implementation into the lab software and the proportion of non-fasting patients.


Assuntos
Hiperlipidemias , Humanos , LDL-Colesterol , Estudos Retrospectivos , Triglicerídeos , Jejum
3.
Clin Chem Lab Med ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069817

RESUMO

OBJECTIVES: Dysbetalipoproteinemia (DBL) is a combined dyslipidemia associated with an increased risk of atherosclerotic cardiovascular diseases mostly occurring in ε2ε2 subjects and infrequently in subjects with rare APOE variants. Several algorithms have been proposed to screen DBL. In this work, we compared the diagnostic performances of nine algorithms including a new one. METHODS: Patients were divided into 3 groups according to their APOE genotype: ε2ε2 ("ε2ε2", n=49), carriers of rare variants ("APOEmut", n=20) and non-carriers of ε2ε2 nor APOE rare variant ("controls", n=115). The algorithms compared were those from Fredrickson, Sniderman, Boot, Paquette, De Graaf, Sampson, eSampson, Bea and ours, the "Hospices Civils de Lyon (HCL) algorithm". Our gold standard was the presence of a ε2ε2 genotype or of a rare variant associated with triglycerides (TG) >1.7 mmol/L. A replication in the UK Biobank and a robustness analysis were performed by considering only subjects with both TG and low-density lipoprotein-cholesterol (LDLc) >90th percentile. RESULTS: Total cholesterol (TC)/ApoB and NHDLC/ApoB are the best ratios to suspect DBL. In ε2ε2, according to their likelihood ratios (LR), the most clinically efficient algorithms were the HCL, Sniderman and De Graaf's. In APOEmut, Sniderman's algorithm exhibited the lowest negative LR (0.07) whereas the HCL's exhibited the highest positive LR (29). In both cohorts, the HCL algorithm had the best LR. CONCLUSIONS: We proposed a powerful algorithm based on ApoB concentration and the routine lipid profile, which performs remarkably well in detecting ε2ε2 or APOE variant-related DBL. Additional studies are needed to further evaluate algorithms performances in DBL carriers of infrequent APOE variants.

4.
Arterioscler Thromb Vasc Biol ; 41(1): e63-e71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207932

RESUMO

OBJECTIVE: Primary hypobetalipoproteinemia is characterized by LDL-C (low-density lipoprotein cholesterol) concentrations below the fifth percentile. Primary hypobetalipoproteinemia mostly results from heterozygous mutations in the APOB (apolipoprotein B) and PCSK9 genes, and a polygenic origin is hypothesized in the remaining cases. Hypobetalipoproteinemia patients present an increased risk of nonalcoholic fatty liver disease and steatohepatitis. Here, we compared hepatic alterations between monogenic, polygenic, and primary hypobetalipoproteinemia of unknown cause. Approach and Results: Targeted next-generation sequencing was performed in a cohort of 111 patients with hypobetalipoproteinemia to assess monogenic and polygenic origins using an LDL-C-dedicated polygenic risk score. Forty patients (36%) had monogenic hypobetalipoproteinemia, 38 (34%) had polygenic hypobetalipoproteinemia, and 33 subjects (30%) had hypobetalipoproteinemia from an unknown cause. Patients with monogenic hypobetalipoproteinemia had lower LDL-C and apolipoprotein B plasma levels compared with those with polygenic hypobetalipoproteinemia. Liver function was assessed by hepatic ultrasonography and liver enzymes levels. Fifty-nine percent of patients with primary hypobetalipoproteinemia presented with liver steatosis, whereas 21% had increased alanine aminotransferase suggestive of liver injury. Monogenic hypobetalipoproteinemia was also associated with an increased prevalence of liver steatosis (81% versus 29%, P<0.001) and liver injury (47% versus 0%) compared with polygenic hypobetalipoproteinemia. CONCLUSIONS: This study highlights the importance of genetic diagnosis in the clinical care of primary hypobetalipoproteinemia patients. It shows for the first time that a polygenic origin of hypobetalipoproteinemia is associated with a lower risk of liver steatosis and liver injury versus monogenic hypobetalipoproteinemia. Thus, polygenic risk score is a useful tool to establish a more personalized follow-up of primary hypobetalipoproteinemia patients.


Assuntos
Apolipoproteína B-100/genética , LDL-Colesterol/sangue , Hipobetalipoproteinemias/genética , Herança Multifatorial , Mutação , Hepatopatia Gordurosa não Alcoólica/etiologia , Pró-Proteína Convertase 9/genética , Adulto , Biomarcadores/sangue , Regulação para Baixo , Feminino , Predisposição Genética para Doença , Humanos , Hipobetalipoproteinemias/sangue , Hipobetalipoproteinemias/complicações , Hipobetalipoproteinemias/diagnóstico , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Fenótipo , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Adulto Jovem
5.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457099

RESUMO

Hypobetalipoproteinemia is characterized by LDL-cholesterol and apolipoprotein B (apoB) plasma levels below the fifth percentile for age and sex. Familial hypobetalipoproteinemia (FHBL) is mostly caused by premature termination codons in the APOB gene, a condition associated with fatty liver and steatohepatitis. Nevertheless, many families with a FHBL phenotype carry APOB missense variants of uncertain significance (VUS). We here aimed to develop a proof-of-principle experiment to assess the pathogenicity of VUS using the genome editing of human liver cells. We identified a novel heterozygous APOB-VUS (p.Leu351Arg), in a FHBL family. We generated APOB knock-out (KO) and APOB-p.Leu351Arg knock-in Huh7 cells using CRISPR-Cas9 technology and studied the APOB expression, synthesis and secretion by digital droplet PCR and ELISA quantification. The APOB expression was decreased by 70% in the heterozygous APOB-KO cells and almost abolished in the homozygous-KO cells, with a consistent decrease in apoB production and secretion. The APOB-p.Leu351Arg homozygous cells presented with a 40% decreased APOB expression and undetectable apoB levels in cellular extracts and supernatant. Thus, the p.Leu351Arg affected the apoB secretion, which led us to classify this new variant as likely pathogenic and to set up a hepatic follow-up in this family. Therefore, the functional assessment of APOB-missense variants, using gene-editing technologies, will lead to improvements in the molecular diagnosis of FHBL and the personalized follow-up of these patients.


Assuntos
Fígado Gorduroso , Hipobetalipoproteinemia Familiar por Apolipoproteína B , Hipobetalipoproteinemias , Apolipoproteínas B/metabolismo , Sistemas CRISPR-Cas , Fígado Gorduroso/genética , Humanos , Hipobetalipoproteinemia Familiar por Apolipoproteína B/genética , Hipobetalipoproteinemias/diagnóstico , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628605

RESUMO

Primary hypercholesterolemia is characterized by elevated LDL-cholesterol (LDL-C) levels isolated in autosomal dominant hypercholesterolemia (ADH) or associated with elevated triglyceride levels in familial combined hyperlipidemia (FCHL). Rare APOE variants are known in ADH and FCHL. We explored the APOE molecular spectrum in a French ADH/FCHL cohort of 5743 unrelated probands. The sequencing of LDLR, PCSK9, APOB, and APOE revealed 76 carriers of a rare APOE variant, with no mutation in LDLR, PCSK9, or APOB. Among the 31 APOE variants identified here, 15 are described in ADH, 10 in FCHL, and 6 in both probands. Five were previously reported with dyslipidemia and 26 are novel, including 12 missense, 5 synonymous, 2 intronic, and 7 variants in regulatory regions. Sixteen variants were predicted as pathogenic or likely pathogenic, and their carriers had significantly lower polygenic risk scores (wPRS) than carriers of predicted benign variants. We observed no correlation between LDL-C levels and wPRS, suggesting a major effect of APOE variants. Carriers of p.Leu167del were associated with a severe phenotype. The analysis of 11 probands suggests that carriers of an APOE variant respond better to statins than carriers of a LDLR mutation. Altogether, we show that the APOE variants account for a significant contribution to ADH and FCHL.


Assuntos
Apolipoproteínas E , Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
7.
Clin Genet ; 98(6): 589-594, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33111339

RESUMO

The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.


Assuntos
Variações do Número de Cópias de DNA/genética , Dislipidemias/genética , Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dislipidemias/diagnóstico , Dislipidemias/patologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Testes Genéticos , Humanos , Masculino , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA