Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genome Res ; 34(3): 441-453, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604731

RESUMO

Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.


Assuntos
Aneuploidia , Duplicação Cromossômica , Regulação da Expressão Gênica , Genoma de Protozoário , Evolução Molecular , Trypanosomatina/genética , Filogenia
2.
Proc Natl Acad Sci U S A ; 120(48): e2309306120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988471

RESUMO

RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.


Assuntos
Trypanosoma brucei brucei , Estruturas R-Loop , Variação Antigênica/genética , Quebras de DNA , DNA , RNA , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
3.
Nucleic Acids Res ; 51(20): 11123-11141, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843098

RESUMO

RNA-DNA hybrids are epigenetic features of genomes that provide a diverse and growing range of activities. Understanding of these functions has been informed by characterising the proteins that interact with the hybrids, but all such analyses have so far focused on mammals, meaning it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes. The African trypanosome is a single-cell eukaryotic parasite of the Discoba grouping and displays substantial divergence in several aspects of core biology from its mammalian host. Here, we show that DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry recovers 602 putative interactors in T. brucei mammal- and insect-infective cells, some providing activities also found in mammals and some lineage-specific. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, alters T. brucei nuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each factor affects the operation of the parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids to T. brucei biology, including new functions in host immune evasion as well as activities likely fundamental to eukaryotic genome function.


Assuntos
Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/metabolismo , Evasão da Resposta Imune/genética , RNA/genética , Antígenos de Superfície , Variação Antigênica/genética , DNA/genética , Mamíferos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Trends Genet ; 37(1): 21-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32993968

RESUMO

The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome's content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read-write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read-write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/genética , Genoma de Protozoário , Kinetoplastida/genética , Leishmania/genética , Trypanosoma brucei brucei/genética , Animais
5.
Curr Genomics ; 19(2): 98-109, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491738

RESUMO

INTRODUCTION: Understanding how the nuclear genome of kinetoplastid parasites is replicated received experimental stimulus from sequencing of the Leishmania major, Trypanosoma brucei and Trypanosoma cruzi genomes around 10 years ago. Gene annotations suggested key players in DNA replication initiation could not be found in these organisms, despite considerable conservation amongst characterised eukaryotes. Initial studies that indicated trypanosomatids might possess an archaeal-like Origin Recognition Complex (ORC), composed of only a single factor termed ORC1/CDC6, have been supplanted by the more recent identification of an ORC in T. brucei. However, the constituent subunits of T. brucei ORC are highly diverged relative to other eukaryotic ORCs and the activity of the complex appears subject to novel, positive regulation. The availability of whole genome sequences has also allowed the deployment of genome-wide strategies to map DNA replication dynamics, to date in T. brucei and Leishmania. ORC1/CDC6 binding and function in T. brucei displays pronounced overlap with the unconventional organisation of gene expression in the genome. Moreover, mapping of sites of replication initiation suggests pronounced differences in replication dynamics in Leishmania relative to T. brucei. CONCLUSION: Here we discuss what implications these emerging data may have for parasite and eukaryotic biology of DNA replication.

6.
Nucleic Acids Res ; 44(10): 4763-84, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26951375

RESUMO

Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.


Assuntos
Replicação do DNA , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Ciclo Celular , Núcleo Celular/genética , Complexo de Reconhecimento de Origem/fisiologia , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/metabolismo
7.
Curr Genet ; 63(3): 441-449, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27822899

RESUMO

All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.


Assuntos
Antígenos/análise , Interações Hospedeiro-Patógeno/genética , Recombinação Genética/genética , Trypanosoma brucei gambiense/genética , Tripanossomíase Africana/genética , Imunidade Adaptativa/genética , Animais , Variação Antigênica/genética , Antígenos/imunologia , Replicação do DNA/genética , Conversão Gênica/genética , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/parasitologia
8.
Nucleic Acids Res ; 43(5): 2655-65, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25690894

RESUMO

Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.


Assuntos
Replicação do DNA/genética , DNA de Protozoário/genética , Biologia Molecular/métodos , Origem de Replicação/genética , Trypanosoma brucei brucei/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos/genética , Replicação do DNA/efeitos dos fármacos , Citometria de Fluxo , Genoma de Protozoário/genética , Hidroxiureia/farmacologia , Cinética , Estágios do Ciclo de Vida/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Tempo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento
9.
Nat Commun ; 14(1): 8200, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081826

RESUMO

UPF1-like helicases play roles in telomeric heterochromatin formation and X-chromosome inactivation, and also in monogenic variant surface glycoprotein (VSG) expression via VSG exclusion-factor-2 (VEX2), a UPF1-related protein in the African trypanosome. We show that VEX2 associates with chromatin specifically at the single active VSG expression site on chromosome 6, forming an allele-selective connection, via VEX1, to the trans-splicing locus on chromosome 9, physically bridging two chromosomes and the VSG transcription and splicing compartments. We further show that the VEX-complex is multimeric and self-regulates turnover to tightly control its abundance. Using single cell transcriptomics following VEX2-depletion, we observed simultaneous derepression of many other telomeric VSGs and multi-allelic VSG expression in individual cells. Thus, an allele-selective, inter-chromosomal, and self-limiting VEX1-2 bridge supports monogenic VSG expression and multi-allelic VSG exclusion.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Alelos , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Trypanosoma/metabolismo , Glicoproteínas de Membrana/genética , Telômero/metabolismo
10.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166108

RESUMO

African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.


Assuntos
Trypanosoma , Trypanosoma/citologia , Trypanosoma/crescimento & desenvolvimento , Trypanosoma/metabolismo , Análise da Expressão Gênica de Célula Única , Criopreservação , RNA de Protozoário/análise , Proteínas de Protozoários/análise
11.
Nat Commun ; 13(1): 5326, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088375

RESUMO

Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.


Assuntos
Trypanosoma brucei brucei , Ciclo Celular/genética , Genoma , Humanos , Mitose , Interferência de RNA , Trypanosoma brucei brucei/metabolismo
12.
Cell Microbiol ; 11(10): 1492-501, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19496788

RESUMO

Parasite infection can lead to alterations in the permeability of host plasma membranes. Presented here is the first demonstration that this phenomenon occurs in Plasmodium-infected liver cells. Using the whole-cell patch-clamp technique, volume-regulated anion channel (VRAC) activity was characterized in Huh-7 cells (a human hepatoma cell line) before and after infection with Plasmodium berghei. Consistent with the presence of VRACs, hypotonic bath solution induced large ion currents in Huh-7 cells that rectified outwardly, reversed close to the equilibrium potential for Cl(-) and were inhibited by tamoxifen, clomiphene, mefloquine and 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), with IC(50) values of 4 +/- 1, 4 +/- 2, 2 +/- 1 and 52 +/- 12 microM respectively. In isotonic conditions, initial current recordings measured in uninfected and immature (24 h post invasion) parasite-infected Huh-7 cells were similar (with conductances of 14 +/- 3 versus 19 +/- 5 pS/pF). However, in mature (48-72 h post invasion) parasite-infected Huh-7 cells there was a sevenfold increase in currents (with a conductance of 98 +/- 16 pS/pF). The elevated currents observed in the latter are consistent with VRAC-like activity and the possible reasons for their activation are discussed.


Assuntos
Ânions/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Hepatócitos/parasitologia , Canais Iônicos/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Animais , Tamanho Celular , Cloro/metabolismo , Clomifeno/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Canais Iônicos/efeitos dos fármacos , Mefloquina/farmacologia , Nitrobenzoatos/farmacologia , Tamoxifeno/farmacologia
13.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897188

RESUMO

DNA replication is needed to duplicate a cell's genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.


Assuntos
Estruturas Cromossômicas , Replicação do DNA/genética , Duplicação Gênica/genética , Genoma de Protozoário/genética , Leishmania major/genética , Estruturas Cromossômicas/química , Estruturas Cromossômicas/genética , Estruturas Cromossômicas/metabolismo , Cromossomos/química , Cromossomos/genética , Histonas/genética , Histonas/metabolismo , Fase S/genética
14.
Methods Mol Biol ; 2116: 225-262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221924

RESUMO

Understanding the rate and patterns of genome variation is becoming ever more amenable to whole-genome analysis through advances in DNA sequencing, which may, at least in some circumstances, have supplanted more localized analyses by cellular and genetic approaches. Whole-genome analyses can utilize both short- and long-read sequence technologies. Here we describe how sequence generated by these approaches has been used in trypanosomatids to examine DNA replication dynamics, the accumulation of modified histone H2A due to genome damage, and evaluation of genome variation, focusing on ploidy change.


Assuntos
Genoma de Protozoário/genética , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Leishmania major/genética , Análise de Sequência de DNA , Cromossomos/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Conjuntos de Dados como Assunto , Histonas/genética , Parasitologia/métodos
15.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289179

RESUMO

Damaged DNA typically imposes stringent controls on eukaryotic cell cycle progression, ensuring faithful transmission of genetic material. Some DNA breaks, and the resulting rearrangements, are advantageous, however. For example, antigenic variation in the parasitic African trypanosome, Trypanosoma brucei, relies upon homologous recombination-based rearrangements of telomeric variant surface glycoprotein (VSG) genes, triggered by breaks. Surprisingly, trypanosomes with a severed telomere continued to grow while progressively losing subtelomeric DNA, suggesting a nominal telomeric DNA damage checkpoint response. Here, we monitor the single-stranded DNA-binding protein replication protein A (RPA) in response to induced, locus-specific DNA breaks in T. brucei RPA foci accumulated at nucleolar sites following a break within ribosomal DNA and at extranucleolar sites following a break elsewhere, including adjacent to transcribed or silent telomeric VSG genes. As in other eukaryotes, RPA foci were formed in S phase and γH2A and RAD51 damage foci were disassembled prior to mitosis. Unlike in other eukaryotes, however, and regardless of the damaged locus, RPA foci persisted through the cell cycle, and these cells continued to replicate their DNA. We conclude that a DNA break, regardless of the damaged locus, fails to trigger a stringent cell cycle checkpoint in T. brucei This DNA damage tolerance may facilitate the generation of virulence-enhancing genetic diversity, within subtelomeric domains in particular. Stringent checkpoints may be similarly lacking in some other eukaryotic cells.IMPORTANCE Chromosome damage must be repaired to prevent the proliferation of defective cells. Alternatively, cells with damage must be eliminated. This is true of human and several other cell types but may not be the case for single-celled parasites, such as trypanosomes. African trypanosomes, which cause lethal diseases in both humans and livestock, can actually exploit chromosomal damage to activate new surface coat proteins and to evade host immune responses, for example. We monitored responses to single chromosomal breaks in trypanosomes using a DNA-binding protein that, in response to DNA damage, forms nuclear foci visible using a microscope. Surprisingly, and unlike what is seen in mammalian cells, these foci persist while cells continue to divide. We also demonstrate chromosome replication even when one chromosome is broken. These results reveal a remarkable degree of damage tolerance in trypanosomes, which may suit the lifestyle of a single-celled parasite, potentially facilitating adaptation and enhancing virulence.


Assuntos
Dano ao DNA , Replicação do DNA , Telômero/genética , Trypanosoma brucei brucei/genética , Ciclo Celular , Quebras de DNA de Cadeia Dupla , Variação Genética , Proteínas de Protozoários/genética , Proteína de Replicação A/genética
16.
Trends Parasitol ; 33(11): 858-874, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844718

RESUMO

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.


Assuntos
Replicação do DNA/fisiologia , Trypanosoma/genética , Animais , Sistemas de Liberação de Medicamentos , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Pesquisa/tendências
17.
Elife ; 52016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27228154

RESUMO

Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating - a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility.


Assuntos
Variação Antigênica , Replicação do DNA , Telômero/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Quebras de DNA , Reparo do DNA , RecQ Helicases/metabolismo
18.
Genome Biol ; 16: 230, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26481451

RESUMO

BACKGROUND: DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. RESULTS: Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. CONCLUSIONS: The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.


Assuntos
Cromossomos , Leishmania/genética , Origem de Replicação , Mapeamento Cromossômico , Loci Gênicos , Genoma de Protozoário , Leishmania major/genética , Trypanosoma brucei brucei/genética
19.
Trends Parasitol ; 30(1): 27-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24287149

RESUMO

Nuclear DNA replication is, arguably, the central cellular process in eukaryotes, because it drives propagation of life and intersects with many other genome reactions. Perhaps surprisingly, our understanding of nuclear DNA replication in kinetoplastids was limited until a clutch of studies emerged recently, revealing new insight into both the machinery and genome-wide coordination of the reaction. Here, we discuss how these studies suggest that the earliest acting components of the kinetoplastid nuclear DNA replication machinery - the factors that demarcate sites of the replication initiation, termed origins - are diverged from model eukaryotes. In addition, we discuss how origin usage and replication dynamics relate to the highly unusual organisation of transcription in the genome of Trypanosoma brucei.


Assuntos
Replicação do DNA , DNA de Cinetoplasto/genética , Kinetoplastida/genética , Evolução Biológica , Núcleo Celular/genética , Genoma de Protozoário , Trypanosoma brucei brucei/genética
20.
J Med Chem ; 52(23): 7800-7, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19799426

RESUMO

Peptidomimetic imidazolidin-4-one derivatives of primaquine (imidazoquines) recently displayed in vitro activity against blood schizonts of a chloroquine-resistant strain of Plasmodium falciparum. Preliminary studies with a subset of such imidazoquines showed them to both block transmission of P. berghei malaria from mouse to mosquito and be highly stable toward hydrolysis at physiological conditions. This prompted us to have deeper insight into the activity of imidazoquines against both Plasmodia and Pneumocystis carinii, on which primaquine is also active. Full assessment of the in vivo transmission-blocking activity of imidazoquines, in vitro tissue-schizontocidal activity on P. berghei-infected hepatocytes, and in vitro anti-P. carinii activity is now reported. All compounds were active in these biological assays, with generally lower activity than the parent drug. However, imidazoquines' stability against both oxidative deamination and proteolytic degradation suggest that they will probably have higher oral bioavailability and lower hematotoxicity than primaquine, which might translate into higher therapeutic indexes.


Assuntos
Antimaláricos/farmacologia , Imidazóis/farmacologia , Pneumocystis carinii/efeitos dos fármacos , Animais , Antimaláricos/sangue , Antimaláricos/síntese química , Antimaláricos/química , Linhagem Celular , Fenômenos Químicos , Transmissão de Doença Infecciosa , Estabilidade de Medicamentos , Feminino , Humanos , Imidazóis/sangue , Imidazóis/síntese química , Imidazóis/química , Fígado/parasitologia , Camundongos , Plasmodium falciparum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA