Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Exp Biol ; 225(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35582832

RESUMO

Marine mammals have undergone a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 million years ago). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphology and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp.). We report significant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, orientation patch count rotated (OPCR) and relief index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.


Assuntos
Caniformia , Dente , Animais , Evolução Biológica , Caniformia/anatomia & histologia , Comportamento Alimentar , Filogenia , Punções
2.
J Exp Biol ; 220(Pt 24): 4703-4710, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074703

RESUMO

Sea otters represent an interesting model for studies of mammalian feeding evolution. Although they are marine mammals, sea otters returned to the sea relatively recently and feed at the surface. Therefore, they represent a transitional stage of aquatic adaptation. Currently no feeding performance studies of sea otters have been conducted. The main objective of this study was to characterize the feeding kinematic profile in sea otters. It was hypothesized that sea otters would exhibit a terrestrial feeding behavior and that they forcefully crush hard prey at large gapes. As a result, biting kinematics would be congruent with biting behavior reported for their terrestrial ancestors, thus providing additional evidence that raptorial biting is a conserved behavior even in recently aquatic mammals. Sea otters consistently used a durophagous raptorial biting mode characterized by large gapes, large gape angles and lack of lateral gape occlusion. The shorter skulls and mandibles of sea otters, along with increased mechanical advantages of the masseter and increased bite force, form a repertoire of functional traits for durophagy. Here we consider durophagy to be a specialized raptorial biting feeding mode. A comparison of feeding kinematics of wild versus captive sea otters showed no significant differences in lateral kinematic profiles, and only minor differences in three frontal kinematic profiles, which included a slower maximum opening gape velocity, a slower maximum gape opening velocity, and a slower maximum closing gape velocity in captive sea otters. Data indicate functional innovations for producing large bite forces at wide gape and gape angles.


Assuntos
Comportamento Alimentar , Lontras/fisiologia , Animais , Fenômenos Biomecânicos , Força de Mordida
3.
Brain Behav Evol ; 88(1): 43-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27548103

RESUMO

Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 ± 422.3 axons/F-SC and mean axon counts by column ranged from 550 ± 97.4 axons/F-SC (medially, column 11) to 1,632 ± 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 ± 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by ∼20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by ∼10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit microstructural and innervational differences between their microvibrissae (columns 8-11) and macrovibrissae (columns 1-7). We hypothesize that this feature is conserved among pinnipeds and may result in functional compartmentalization within their mystacial vibrissal arrays.


Assuntos
Axônios , Focas Verdadeiras/fisiologia , Vibrissas/citologia , Vibrissas/inervação , Animais , Contagem de Células
4.
J Exp Biol ; 218(Pt 20): 3229-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26449976

RESUMO

Feeding performance studies can address questions relevant to feeding ecology and evolution. Our current understanding of feeding mechanisms for aquatic mammals is poor. Therefore, we characterized the feeding kinematics and performance of five Steller sea lions (Eumetopias jubatus) and six northern fur seals (Callorhinus ursinus). We tested the hypotheses that both species use suction as their primary feeding mode, and that rapid jaw opening was related to suction generation. Steller sea lions used suction as their primary feeding mode, but also used a biting feeding mode. In contrast, northern fur seals only used a biting feeding mode. Kinematic profiles of Steller sea lions were all indicative of suction feeding (i.e. a small gape, small gape angle, large depression of the hyolingual apparatus and lip pursing). However, jaw opening as measured by gape angle opening velocity (GAOV) was relatively slow in Steller sea lions. In contrast to Steller sea lions, the GAOV of northern fur seals was extremely fast, but their kinematic profiles indicated a biting feeding mode (i.e. northern fur seals exhibited a greater gape, a greater gape angle and minimal depression of the hyolingual apparatus compared with Steller sea lions). Steller sea lions produced both subambient and suprambient pressures at 45 kPa. In contrast, northern fur seals produced no detectable pressure measurements. Steller sea lions have a broader feeding repertoire than northern fur seals, which likely enables them to feed on a greater variety of prey, in more diverse habitats. Based on the basal phylogenetic position of northern fur seals, craniodental morphological data of the Callorhinus lineage, and the performance data provided in this study, we suggest that northern fur seals may be exhibiting their ancestral feeding mode.


Assuntos
Evolução Biológica , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Otárias/fisiologia , Leões-Marinhos/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Otárias/anatomia & histologia , Boca/anatomia & histologia , Boca/fisiologia
5.
R Soc Open Sci ; 10(4): 221424, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090964

RESUMO

The feeding apparatus of sea turtles comprises cornified keratinous rhamphothecae overlaying a bony rostrum. Although keratin is less stiff than the enamel of toothed animals, certain species of sea turtles are capable of withstanding large forces when feeding on hard prey. We aimed to quantify the mineral density, water content and compressive mechanical properties of rhamphothecae from two durophagous species: loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) sea turtles. Since loggerheads theoretically produce the greater bite forces of these two species, we predicted that keratin from their rhamphothecae would have a greater mineral density and be stiffer, stronger and tougher compared with Kemp's ridley sea turtles. We found that total water weight of hydrated specimens (20%) was consistent between species. Rhamphotheca mineral density ranged between 0 and 0.069 g cm-3; loggerheads had significantly greater mineral density compared with Kemp's ridleys, for which several specimens had no mineral detected. Despite the greater mineral density in loggerheads, we found no significant difference in Young's modulus, yield strength or toughness between these species. In addition to mineral density, our findings suggest that other material components, such as sulfur, may be influencing the material properties of keratin from sea turtle rhamphothecae.

6.
R Soc Open Sci ; 10(9): 230392, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37771965

RESUMO

The ecological state of the Persian or Arabian Gulf (hereafter 'Gulf') is in sharp decline. Calls for comprehensive ecosystem-based management approaches and transboundary conservation have gone largely unanswered, despite mounting marine threats made worse by climate change. The region's long-standing political tensions add additional complexity, especially now as some Gulf countries will soon adopt ambitious goals to protect their marine environments as part of new global environmental commitments. The recent interest in global commitments comes at a time when diplomatic relations among all Gulf countries are improving. There is a window of opportunity for Gulf countries to meet global marine biodiversity conservation commitments, but only if scientists engage in peer-to-peer diplomacy to build trust, share knowledge and strategize marine conservation options across boundaries. The Gulf region needs more ocean diplomacy and coordination; just as critically, it needs actors at its science-policy interface to find better ways of adapting cooperative models to fit its unique marine environment, political context and culture. We propose a practical agenda for scientist-led diplomacy in the short term and lines of research from which to draw (e.g. co-production, knowledge exchange) to better design future science diplomacy practices and processes suited to the Gulf's setting.

7.
J Exp Biol ; 215(Pt 23): 4166-74, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22899532

RESUMO

Ontogenetic studies of vertebrate feeding performance can help address questions relevant to foraging ecology. Feeding morphology and performance can either limit access to food resources or open up new trophic niches in both aquatic and terrestrial systems. Loggerhead sea turtles are long-lived vertebrates with complex life histories that are marked by an ontogenetic shift from an oceanic habitat to a coastal neritic habitat, and a transition from soft oceanic prey to hard, benthic prey. Although considered durophagous and strong biters, bite performance has not been measured in loggerheads, nor has the ontogeny of bite performance been characterized. In the present study, we collected measurements of bite force in loggerhead turtles from hatchlings to adults. When subadults reach the body size at which the ontogenetic shift occurs, their crushing capability is great enough for them to consume numerous species of hard benthic prey of small sizes. As loggerheads mature and bite performance increases, larger and harder benthic prey become accessible. Loggerhead bite performance eventually surpasses the crushing capability of other durophagous carnivores, thereby potentially reducing competition for hard benthic prey. The increasing bite performance and accompanying changes in morphology of the head and jaws are likely an effective mechanism for resource partitioning and decreasing trophic competition. Simultaneous measurements of body and head size and the use of non-linear reduced major axis regression show that bite force increases with significant positive allometry relative to body size (straight carapace length, straight carapace width and mass) and head size (head width, height and length). Simple correlation showed that all recorded morphometrics were good predictors of measured bite performance, but an AICc-based weighted regression showed that body size (straight carapace width followed by straight carapace length and mass, respectively) were more likely predictors of bite force than head size morphometrics (head width and head length).


Assuntos
Comportamento Alimentar , Cabeça/anatomia & histologia , Tartarugas/anatomia & histologia , Tartarugas/fisiologia , Animais , Dieta , Meio Ambiente , Cabeça/crescimento & desenvolvimento , Tartarugas/crescimento & desenvolvimento
8.
Integr Org Biol ; 4(1): obac027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860459

RESUMO

Synopsis: The unusual shape of sphyrnid (hammerhead shark) heads has led to many functional hypotheses of potential sensory advantages and enhanced olfactory performance. Recent investigations into the flow of water within the sphyrnid olfactory chamber demonstrate that this complex structure exhibits a differential pressure system between the 2 nares that induces flow through the chamber. This leads to differential fluid velocities in different parts of the olfactory chamber. Particularly, lamellae at the medial end of the olfactory chamber experience a near-stagnant recirculation of water. The objectives of this study were to (1) describe the microstructure of the olfactory rosette of bonnethead sharks (Sphyrna tiburo) and (2) given the variability of water flow within the sphyrnid olfactory rosette, investigate differences of individual lamellae based on their positioning within the rosette. Specifically, we investigated degree of secondary folding, percent sensory area, and relative surface along the lateral-to-medial gradient. Both degree of secondary folding and percent sensory area may serve as proxies for olfactory sensitivity, providing connectivity between area devoted to sensitivity and water flow within the olfactory organ. We found that bonnethead sharks exhibited similar lamellar morphology to other shark species. We also described the projection of the olfactory nerve layer through an individual lamella. Additionally, we found that lamellae within the medial portion of the organ, which experience slower water velocities, had less secondary lamellar folds and less sensory area. These findings imply that these areas may be less sensitive. Future work should test for sensitivity differences within the rosette along the lateral-to-medial gradient. Spanish: La forma inusual de las cabezas de los esfírnidos (tiburones martillo) ha llevado a muchas hipótesis funcionales de posibles ventajas sensoriales y unas mejores capacidades olfativas. Las investigaciones recientes sobre el flujo de agua dentro del órgano olfativo de los esfírnidos, demuestran que esta estructura compleja exhibe un sistema de presión diferente entre las dos fosas nasales que induce el flujo en el órgano. Esto conduce a velocidades de fluido diferentes en distintas partes del órgano olfativo. En particular, las láminas en el extremo medial del órgano olfativo experimentan una recirculación de agua casi estancada. Los objetivos de este estudio fueron 1) describir la microestructura de la roseta olfativa de los tiburones cabeza de pala (Sphyrna tiburo) y 2) considerando la variabilidad del flujo de agua dentro de la roseta olfativa de los esfírnidos, investigar las diferencias de las laminillas individuales, basadas en su posición dentro de la roseta. Específicamente, hemos investigado el grado de plegamiento secundario, el porcentaje del área sensorial y el área relativa de superficie a lo largo del gradiente de lateral a medial. El grado de plegamiento secundario y el porcentaje del área sensorial pueden servir como indicadores de la sensibilidad olfativa, proporcionando conectividad entre el área dedicada a la sensibilidad y el flujo de agua dentro del órgano olfativo. Descubrimos que los tiburones cabeza de pala exhibían una morfología laminar similar a la de otras especies de tiburones. También hemos descrito la proyección del estrato del nervio olfativo dentro de una lámina individual. Además, encontramos que las laminillas dentro de la porción medial del órgano que experimentan velocidades de agua más lentas, tenían menos pliegues laminares secundarios y una menor área sensorial. Estos hallazgos implican que estas áreas pueden ser menos sensitivas. El trabajo futuro debería evaluar las diferencias de sensibilidad dentro de la roseta a lo largo del gradiente de lateral a medial. German: Die ungewöhnliche Kopfform der Sphyrniden (Hammerhaie) hat schon zu vielen funktionellen Hypothesen bezüglich möglicher sensorischer Vorteile und verbesserter olfaktorischer Leistung geführt. Kürzlich veröffentlichte Studien zur Wasserströmung innerhalb der olfaktorischen Kammern von Sphyrniden zeigen, dass diese komplexe Struktur unterschiedliche Drucksysteme zwischen den beiden Nasenlöchern erzeugt, welches eine Strömung durch die Nasenkammer erzeugt. Dies wiederum führt zu unterschiedlichen Flüssigkeitsströmungen in verschiedenen Abschnitten der olfaktorischen Kammer. Besonders bei den Lamellen am medialen Ende der olfaktorischen Kammer gibt es eine fast schon stillstehende Rezirkulation von Wasser. Die Ziele dieser Studie waren 1) das Beschreiben der Mikrostruktur der olfaktorischen Rosette des Schaufelnasen-Hammerhais (Sphyrna tiburo) und 2) wollten wir, aufgrund der Variabilität der Wasserströmung innerhalb der olfaktorischen Rosette der Sphyrniden, die Unterschiede von individuellen Lamellen basierend auf ihrer unterschiedlichen Position innerhalb der Rosette untersuchen. Wir untersuchten den Grad an sekundären Falten, den Prozentsatz an sensorischer Fläche und die relative Oberfläche entlang dem lateral-zu-medialem Gradienten. Sowohl der Grad an sekundären Falten wie auch der Prozentsatz an sensorischer Fläche mögen als Annäherung für die olfaktorische Sensibilität dienen, weil sie für eine Verbindung zwischen der Fläche, die dem Geruchssinn und der Strömung zwischen den olfaktorischen Organen sorgt. Wir fanden, dass die Schaufelnasen-Hammerhaie eine ähnliche lamellare Morphologie zeigen wie andere Hai-Arten. Wir beschreiben auch wie der Geruchsnerv durch eine individuelle Lamelle verläuft. Weiter fanden wir, dass die Lamellen innerhalb des mittleren Teils des Organs, welches geringe Strömungsgeschwindigkeiten erfährt, weniger sekundäre lamellare Falten enthält und weniger sensorische Fläche. Diese Entdeckungen implizieren, dass diese Bereiche weniger sensibel sind auf Gerüche. Zukünftige Arbeiten sollten die unterschiedlichen Sensibilitäten innerhalb der Rosette entlang des lateral-medialem Gradienten testen.

9.
PeerJ ; 10: e14075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275454

RESUMO

One of the largest and least documented populations of dugongs (Dugong dugon) resides in the coastal waters of the United Arab Emirates, and waters surrounding Saudi Arabia, Bahrain, and Qatar. The archaeological record of dugongs in the Gulf Region is abundant, but little is known about their fossil record in the region. Here we report an isolated sirenian rib fragment from the Futaisi Member of the Fuwayrit Formation near the town of Al Ruwais, in northern Qatar. The Fuwayrit Formation is a marine Pleistocene deposit exposed onshore in Qatar and the United Arab Emirates. Based on the correlative dating of the basal Futaisi Member with other onshore platforms, the rib fragment is approximately 125 ka. We propose that this isolated rib (likely the first rib from the right side) belongs to Dugongidae, with strong similarities to extant Dugong. We cannot, however, eliminate the possibility that it belongs to an extinct taxon, especially given its similarities with other fossil dugongid material from both Qatar and elsewhere in the world. Aside from reflecting the presence of Gulf seagrass communities in the Pleistocene, this occurrence also suggests that different (and potentially multiple) lineages of sirenians inhabited the Gulf Region in the geologic past.


Assuntos
Dugong , Fósseis , Animais , Feminino , Barein , Catar , Sirênios
10.
Anat Rec (Hoboken) ; 302(10): 1837-1845, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30980470

RESUMO

Our understanding of vibrissal function in pinnipeds is poor due to the lack of comparative morphological, neurobiological, and psychophysical performance data. In contrast, the function of terrestrial mammalian vibrissae is better studied. Pinnipeds have the largest vibrissae of all mammals, and phocids may have the most modified vibrissae. The tactile performance for pinniped vibrissae is well known for harbor seals (Phoca vitulina). Harbor seals display at least two types of tactile behavior involving their mystacial vibrissae: a fine discriminatory capability using active touch and hydrodynamic trail following (the ability to detect and follow turbulent trails). This study investigated innervation patterns of harbor seal follicle-sinus complexes (F-SCs) to test the hypothesis that the whiskers used in hydrodynamic trail following possess increased innervation investment compared to other phocids. Therefore, the most lateral vibrissae from five harbor seals were histologically processed so that morphometric measurements and axon counts could be collected. Vibrissae from one harbor seal were immunolabeled with anti-protein gene product (PGP 9.5) to document the pattern of deep vibrissal nerve innervation of the F-SCs. Overall, harbor seals showed an innervation pattern (axons/F-SC and axons/muzzle) similar to other phocids. The ventrolateral vibrissae, involved in hydrodynamic trail following, have greater axon density in harbor seals than harp seals, suggesting harbor seal F-SC innervation patterns could explain their performance at trail following. The combination of microstructural, innervation investment, and behavioral data provides a foundation for functional inference regarding this tactile behavior in harbor seals and also facilitates future comparative work for other pinniped species. Anat Rec, 302:1837-1845, 2019. © 2019 American Association for Anatomy.


Assuntos
Comportamento Animal/fisiologia , Phoca/fisiologia , Natação/fisiologia , Percepção do Tato/fisiologia , Vibrissas/inervação , Animais , Hidrodinâmica , Phoca/anatomia & histologia
11.
J Morphol ; 280(11): 1617-1627, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424610

RESUMO

Vibrissae or follicle-sinus complexes (F-SCs) are highly developed mammalian sensory structures. These blood-filled sinuses are richly innervated and possess novel mechanoreceptors. Although much is known regarding the function of F-SCs in terrestrial mammals, much less is known regarding marine carnivores such as pinnipeds. Pinnipeds possess the largest, most highly innervated vibrissae of any mammal. One such pinniped is the California sea lion, which are generalist marine predators that rely heavily upon tactile discrimination capabilities. Psychophysical studies demonstrate that haptic tactile discrimination using F-SCs is exceptionally sensitive. However, our knowledge of the structure and function of F-SCs in otariids is limited. Our objectives were to investigate the innervation and microstructure of F-SCs across the mystacial vibrissal field and infer function from haptic performance studies in California sea lions. Innervation and microstructure of vibrissae differed considerably compared to similar data available for phocids. Total innervation of mystacial vibrissae was estimated to be 86,042 axons. Investigations of innervation density and investment of microvibrissae versus macrovibrissae demonstrated a significantly increased axon density per F-SC in medial microvibrissal regions compared to lateral macrovibrissae, which supports psychophysical data and somatotopic organization of the central nervous system involved with tactile discrimination capability. Innervation increased from medial microvibrissae (705 ± 125 axons/F-SC) to lateral macrovibrissae (1,447 ± 154) as well as from dorsal (541 ± 60) to ventral (1,493 ± 327) vibrissal regions. These data provide a more complete picture of the sensory ecology of this important aquatic mammalian lineage; the specialization of peripheral sensory structures, central nervous structures with demonstrated enhanced haptic capabilities behaviorally has likely led to the ecological success of California sea lions.


Assuntos
Mecanorreceptores , Leões-Marinhos/anatomia & histologia , Tato , Vibrissas/inervação , Animais , Leões-Marinhos/fisiologia , Vibrissas/anatomia & histologia
12.
J Morphol ; 280(5): 687-700, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30861183

RESUMO

Tooth morphology is often used to inform the feeding ecology of an organism as these structures are important to procure and process dietary resources. In sharks, differences in morphology may facilitate the capture and handling of prey with different physical properties. However, few studies have investigated differences in tooth morphology over ontogeny, throughout the jaws of a single species, or among species at multiple tooth positions. Bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead sharks (Sphyrna tiburo) are coastal predators that exhibit ontogenetic dietary shifts, but differ in their feeding ecologies. This study measured tooth morphology at six positions along the upper and lower jaws of each species using elliptic Fourier analysis to make comparisons within and among species over their ontogeny. Significant ontogenetic differences were detected at four of the six tooth positions in bull sharks, but only the posterior position on the lower jaw appeared to exhibit a functionally relevant shift in morphology. No ontogenetic changes in morphology were detected in blacktip or bonnethead sharks. Intraspecific comparisons found that most tooth positions significantly differed from one another across all species, but heterodonty was greatest in bull sharks. Additionally, interspecific comparisons found differences among all species at each tooth position except between bull and blacktip sharks at two positions. These morphological patterns within and among species may have implications for prey handling efficiency, as well as in providing insight for paleoichthyology studies and reevaluating heterodonty in sharks.


Assuntos
Análise de Fourier , Tubarões/anatomia & histologia , Dente/anatomia & histologia , Animais , Tamanho Corporal , Feminino , Arcada Osseodentária/anatomia & histologia , Masculino , Análise de Componente Principal , Razão de Masculinidade , Especificidade da Espécie
13.
Sci Total Environ ; 650(Pt 1): 1158-1172, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308804

RESUMO

Tissue-based burdens of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were integrated with ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) enzyme activity in bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead (Sphyrna tiburo) sharks from Galveston Bay, TX. The potential toxicity of these burdens was evaluated by calculation of toxic equivalents (TEQs). Concentrations of total PAHs (∑PAHs) were significantly greater in blacktip and bonnethead sharks than bull sharks in liver, but did not exhibit differences in muscle among species. Hepatic concentrations of ∑PAHs in these sharks (range of means: 1560-2200 ng/g wet wt.) were greater than concentrations previously reported in oysters from Galveston Bay (range of means: 134-333 ng/g dry wt.), which suggests that trophic dilution of PAHs may not be reflected in sharks. Total PCBs (∑PCBs) were significantly greatest in bull sharks and lowest in bonnetheads, while blacktips were intermediate to these species. EROD activity was greater in bonnetheads than the other species, whereas GST activity was significantly higher in blacktips and bonnetheads than in bull sharks. Integration of hepatic burdens with biomarker activity via constrained multivariate analysis found correlations for only a small number of individual PAH/PCB congeners. Hepatic TEQ measurements suggest potential physiological effects of these burdens compared to established TEQ thresholds for other taxa, although the likelihood of similar effects in sharks requires further study and the inclusion of toxic endpoints. Our findings indicate that sharks may be prone to the accumulation of PAHs and PCBs, which may result in negative health outcomes for these cartilaginous fishes.


Assuntos
Monitoramento Ambiental , Bifenilos Policlorados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Tubarões/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Golfo do México
14.
Integr Comp Biol ; 59(2): 456-472, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225594

RESUMO

Organisms are composed of hierarchically arranged component parts that must work together to successfully achieve whole organism functions. In addition to integration among individual parts, some ecological demands require functional systems to work together in a type of inter-system performance integration. While performance can be measured by the ability to successfully accomplish ecologically relevant tasks, integration across performance traits can provide a deeper understanding of how these traits allow an organism to survive. The ability to move and the ability to consume food are essential to life, but during prey capture these two functions are typically integrated. Suction-feeding fishes have been used as a model of these interactions, but it is unclear how other ecologically relevant scenarios might reduce or change integration. To stimulate further research into these ideas, we highlight three contexts with the potential to result in changes in integration and underlying performance traits: (1) behavioral flexibility in aquatic feeding modes for capturing alternative prey types, (2) changes in the physical demands imposed by prey capture across environments, and (3) secondary adaptation for suction prey capture behaviors. These examples provide a broad scope of potential drivers of integration that are relevant to selection pressures experienced across vertebrate evolution. To demonstrate how these ideas can be applied and stimulate hypotheses, we provide observations from preliminary analyses of locally adapted populations of Trinidadian guppies (Poecilia reticulata) capturing prey using suction and biting feeding strategies and an Atlantic mudskipper (Periophthalmus barbarus) capturing prey above and below water. We also include a re-analysis of published data from two species of secondarily aquatic cetaceans, beluga whales (Delphinapterus leucas) and Pacific white-sided dolphins (Lagenorhynchus obliquidens), to examine the potential for secondary adaptation to affect integration in suction prey capture behaviors. Each of these examples support the broad importance of integration between locomotor and feeding performance but outline new ways that these relationships can be important when suction demands are reduced or altered. Future work in these areas will yield promising insights into vertebrate evolution and we hope to encourage further discussion on possible avenues of research on functional integration during prey capture.


Assuntos
Adaptação Biológica , Peixes/fisiologia , Comportamento Predatório , Animais , Fenômenos Biomecânicos , Perciformes/fisiologia , Poecilia/fisiologia
15.
Curr Biol ; 28(24): 3992-4000.e2, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503622

RESUMO

Whales use baleen, a novel integumentary structure, to filter feed; filter feeding itself evolved at least five times in tetrapod history but demonstrably only once in mammals [1]. Living baleen whales (mysticetes) are born without teeth, but paleontological and embryological evidence demonstrate that they evolved from toothed ancestors that lacked baleen entirely [2]. The mechanisms driving the origin of filter feeding in tetrapods remain obscure. Here we report Maiabalaena nesbittae gen. et sp. nov., a new fossil whale from early Oligocene rocks of Washington State, USA, lacking evidence of both teeth and baleen. The holotype possesses a nearly complete skull with ear bones, both mandibles, and associated postcrania. Phylogenetic analysis shows Maiabalaena as crownward of all toothed mysticetes, demonstrating that tooth loss preceded the evolution of baleen. The functional transition from teeth to baleen in mysticetes has remained enigmatic because baleen decays rapidly and leaves osteological correlates with unclear homology; the oldest direct evidence for fossil baleen is ∼25 million years younger [3] than the oldest stem mysticetes (∼36 Ma). Previous hypotheses for the origin of baleen [4, 5] are inconsistent with the morphology and phylogenetic position of Maiabalaena. The absence of both teeth and baleen in Maiabalaena is consistent with recent evidence that the evolutionary loss of teeth and origin of baleen are decoupled evolutionary transformations, each with a separate morphological and genetic basis [2, 6]. Understanding these macroevolutionary patterns in baleen whales is akin to other macroevolutionary transformations in tetrapods such as scales to feathers in birds.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Dente/anatomia & histologia , Baleias/anatomia & histologia , Baleias/classificação , Animais , Comportamento Alimentar , Arcada Osseodentária/anatomia & histologia , Paleontologia , Baleias/fisiologia
16.
PLoS One ; 13(9): e0203257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192801

RESUMO

Relatively few details of hawksbill turtle (Eretmochelys imbricata) nesting ecology exist within the Arabian Gulf. Moreover, little is known about how their nesting dynamics compare to nesting populations throughout the rest of the world. Due to the extreme environmental setting, nesting ecology of hawksbills in the Arabian Gulf is of significant interest to researchers and conservationists. The current research reports on a long-term tagging and monitoring program undertaken at Fuwairit beach, Qatar. To investigate nesting behavior, site surveys and tagging were employed from 2010 to 2016. Presence of nests and clutch sizes were confirmed by excavation. Over the entire study period, nesting hawksbills had a mean curved carapace length of 70.8 cm (SD±2.8). A total 187 nests were confirmed, which contained a mean 78.9 eggs per clutch (SD±17.1), over an annual nesting season that lasted an average of 52.2 days (SD±6.3) from the start of April to the start of June. Meta-analysis with other global regions showed these characteristics to be significantly reduced when compared to nesting hawksbills from other populations. Meteorological data analysis showed air temperatures in the Arabian Gulf to increase on average 13.2°C (SD±0.26) from start to the end of nesting annually, which is significantly greater than other global nesting regions. Their smaller body size and reduced fecundity coupled with the extreme change in ambient air temperatures support the hypothesis that hawksbills in the region are more at risk than the already critically endangered hawksbill populations elsewhere in the world.


Assuntos
Comportamento de Nidação/fisiologia , Tartarugas/fisiologia , Animais , Tamanho Corporal , Tamanho da Ninhada , Ecossistema , Espécies em Perigo de Extinção , Ambientes Extremos , Feminino , Masculino , Conceitos Meteorológicos , Catar , Estações do Ano , Temperatura , Tartarugas/anatomia & histologia
17.
Brain Behav Evol ; 70(3): 164-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17595536

RESUMO

Florida manatees (Trichechus manatus latirostris) possess modified vibrissae that are used in conjunction with specialized perioral musculature to manipulate vegetation for ingestion, and aid in the tactile exploration of their environment. Therefore it is expected that manatees possess a large facial motor nucleus that exhibits a complex organization relative to other taxa. The topographical organization of the facial motor nucleus of five adult Florida manatees was analyzed using neuroanatomical methods. Cresyl violet and hematoxylin staining were used to localize the rostrocaudal extent of the facial motor nucleus as well as the organization and location of subdivisions within this nucleus. Differences in size, length, and organization of the facial motor nucleus among mammals correspond to the functional importance of the superficial facial muscles, including perioral musculature involved in the movement of mystacial vibrissae. The facial motor nucleus of Florida manatees was divided into seven subnuclei. The mean rostrocaudal length, width, and height of the entire Florida manatee facial motor nucleus was 6.6 mm (SD 8 0.51; range: 6.2-7.5 mm), 4.7 mm (SD 8 0.65; range: 4.0-5.6 mm), and 3.9 mm (SD 8 0.26; range: 3.5-4.2 mm), respectively. It is speculated that manatees could possess direct descending corticomotorneuron projections to the facial motornucleus. This conjecture is based on recent data for rodents, similiarities in the rodent and sirenian muscular-vibrissal complex, and the analogous nature of the sirenian cortical Rindenkerne system with the rodent barrel system.


Assuntos
Músculos Faciais/inervação , Nervo Facial/anatomia & histologia , Neurônios Motores/citologia , Rombencéfalo/anatomia & histologia , Trichechus manatus/anatomia & histologia , Animais , Evolução Biológica , Músculos Faciais/anatomia & histologia , Nervo Facial/fisiologia , Movimentos da Cabeça/fisiologia , Mecanorreceptores/fisiologia , Microtomia , Neurônios Motores/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Orientação/fisiologia , Rombencéfalo/fisiologia , Especificidade da Espécie , Coloração e Rotulagem , Natação/fisiologia , Tato/fisiologia , Trichechus manatus/fisiologia , Vibrissas/fisiologia
18.
PLoS One ; 12(5): e0178243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542468

RESUMO

The evolution of filter feeding in baleen whales (Mysticeti) facilitated a wide range of ecological diversity and extreme gigantism. The innovation of filter feeding evolved in a shift from a mineralized upper and lower dentition in stem mysticetes to keratinous baleen plates that hang only from the roof of the mouth in extant species, which are all edentulous as adults. While all extant mysticetes are born with a mandible lacking a specialized feeding structure (i.e., baleen), the bony surface retains small foramina with elongated sulci that often merge together in what has been termed the alveolar gutter. Because mysticete embryos develop tooth buds that resorb in utero, these foramina have been interpreted as homologous to tooth alveoli in other mammals. Here, we test this homology by creating 3D models of the internal mandibular morphology from terrestrial artiodactyls and fossil and extant cetaceans, including stem cetaceans, odontocetes and mysticetes. We demonstrate that dorsal foramina on the mandible communicate with the mandibular canal via smaller canals, which we explain within the context of known mechanical models of bone resorption. We suggest that these dorsal foramina represent distinct branches of the inferior alveolar nerve (or artery), rather than alveoli homologous with those of other mammals. As a functional explanation, we propose that these branches provide sensation to the dorsal margin of the mandible to facilitate placement and occlusion of the baleen plates during filer feeding.


Assuntos
Mandíbula/anatomia & histologia , Alvéolos Pulmonares/anatomia & histologia , Perda de Dente/fisiopatologia , Dente/anatomia & histologia , Baleias/anatomia & histologia , Baleias/fisiologia , Animais , Evolução Biológica , Filogenia
19.
PLoS One ; 12(3): e0175037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28362830

RESUMO

Complex foldings of the vaginal wall are unique to some cetaceans and artiodactyls and are of unknown function(s). The patterns of vaginal length and cumulative vaginal fold length were assessed in relation to body length and to each other in a phylogenetic context to derive insights into functionality. The reproductive tracts of 59 female cetaceans (20 species, 6 families) were dissected. Phylogenetically-controlled reduced major axis regressions were used to establish a scaling trend for the female genitalia of cetaceans. An unparalleled level of vaginal diversity within a mammalian order was found. Vaginal folds varied in number and size across species, and vaginal fold length was positively allometric with body length. Vaginal length was not a significant predictor of vaginal fold length. Functional hypotheses regarding the role of vaginal folds and the potential selection pressures that could lead to evolution of these structures are discussed. Vaginal folds may present physical barriers, which obscure the pathway of seawater and/or sperm travelling through the vagina. This study contributes broad insights to the evolution of reproductive morphology and aquatic adaptations and lays the foundation for future functional morphology analyses.


Assuntos
Cetáceos/anatomia & histologia , Vagina/anatomia & histologia , Adaptação Fisiológica , Animais , Feminino , Genitália Feminina/anatomia & histologia , Filogenia
20.
Anat Rec A Discov Mol Cell Evol Biol ; 288(1): 13-25, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16342212

RESUMO

Vibrissal follicle-sinus complexes (F-SCs) are sensory receptors of the mammalian integument system. They are best developed within Pinnipedia. The objective of this study was to investigate the F-SCs of bearded seals (Erignathus barbatus) for benthic foraging adaptations. Bearded seals possessed approximately 244 mystacial F-SCs. In this species, F-SCs consisted of an outer dermal capsule (DC) surrounding a blood sinus system [upper cavernous sinus (UCS), ring sinus (RS), and lower cavernous sinus (LCS)] and concentric rings of epidermal tissue. The UCS comprised up to 62% of the F-SC length and may function as thermal protection for mechanoreceptors. A large asymmetrical ringwulst was located in the RS. A deep vibrissal nerve penetrated the DC at its base and terminated on mechanoreceptors in the epidermal tissues of the LCS and RS. The mean number of myelinated axons per F-SC was 1,314 (range, 811-1,650) and was among the highest number of axons per F-SC reported to date. An estimated mean number of 320,616 myelinated axons innervate the entire mystacial vibrissal array. Merkel-Neurite complexes (MNCs) and small simple laminated corpuscles were found in the region of the LCS. Myelinated axons also terminated on MNCs and lanceolate endings apical to the ringwulst. The number of F-SCs, their geometry in the mystacial region, the number of myelinated axons per F-SC, and the distribution of mechanoreceptors support the premise that pinniped vibrissae are sensitive active-touch receptor systems, and that structural differences in bearded seals, relative to other phocids, may be adaptations for benthic foraging.


Assuntos
Focas Verdadeiras/anatomia & histologia , Vibrissas/inervação , Animais , Comportamento Alimentar , Folículo Piloso/irrigação sanguínea , Folículo Piloso/inervação , Folículo Piloso/ultraestrutura , Mecanorreceptores/irrigação sanguínea , Mecanorreceptores/ultraestrutura , Focas Verdadeiras/fisiologia , Vibrissas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA