Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 16(4): 1633-1647, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817164

RESUMO

In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/administração & dosagem , Polímeros/química , Receptor ErbB-2/metabolismo , Saporinas/administração & dosagem , Anticorpos de Domínio Único/administração & dosagem , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química , Saporinas/química , Anticorpos de Domínio Único/imunologia , Células Tumorais Cultivadas
2.
Nanomaterials (Basel) ; 10(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664364

RESUMO

Since αvß3 integrin is a key component of angiogenesis in health and disease, Arg-Gly-Asp (RGD) peptide-functionalized nanocarriers have been investigated as vehicles for targeted delivery of drugs to the αvß3 integrin-overexpressing neovasculature of tumors. In this work, PEGylated nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) functionalized with cyclic-RGD (cRGD), were evaluated as nanocarriers for the targeting of angiogenic endothelium. For this purpose, NPs (~300 nm) functionalized with cRGD with different surface densities were prepared by maleimide-thiol chemistry and their interactions with human umbilical vein endothelial cells (HUVECs) were evaluated under different conditions using flow cytometry and microscopy. The cell association of cRGD-NPs under static conditions was time-, concentration- and cRGD density-dependent. The interactions between HUVECs and cRGD-NPs dispersed in cell culture medium under flow conditions were also time- and cRGD density-dependent. When washed red blood cells (RBCs) were added to the medium, a 3 to 8-fold increase in NPs association to HUVECs was observed. Moreover, experiments conducted under flow in the presence of RBC at physiologic hematocrit and shear rate, are a step forward in the prediction of in vivo cell-particle association. This approach has the potential to assist development and high-throughput screening of new endothelium-targeted nanocarriers.

3.
J Control Release ; 282: 101-109, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-29526739

RESUMO

Maleimide-thiol chemistry is widely used for the design and preparation of ligand-decorated drug delivery systems such as poly(lactide-co-glycolide) (PLGA) based nanoparticles (NPs). While many publications on nanocarriers functionalized exploiting this strategy are available in the literature, the conditions at which this reaction takes place vary among publications. This paper presents a comprehensive study on the conjugation of the peptide cRGDfK and the nanobody 11A4 (both containing a free thiol group) to maleimide functionalized PLGA NPs by means of the maleimide-thiol click reaction. The influence of different parameters, such as the nanoparticles preparation method and storage conditions as well as the molar ratio of maleimide to ligand used for conjugation, on the reaction efficiency has been evaluated. The NPs were prepared by a single or double emulsion method using different types and concentrations of surfactants and stored at 4 or 20 °C before reaction with the targeting moieties. Several maleimide to ligand molar ratios and different reaction times were studied and the conjugation efficiency was determined by quantification of the not-bound ligand by liquid chromatography. The kind of emulsion used to prepare the NPs as well as the type and concentration of surfactant used had no effect on the conjugation efficiency. Reaction between the maleimide groups present in the NPs and cRGDfK was optimal at a maleimide to thiol molar ratio of 2:1, reaching a conjugation efficiency of 84 ±â€¯4% after 30 min at room temperature in 10 mM HEPES pH 7.0. For 11A4 nanobody the optimal reaction efficiency, 58 ±â€¯12%, was achieved after 2 h of incubation at room temperature in PBS pH 7.4 using a 5:1 maleimide to protein molar ratio. Storage of the NPs at 4 °C for 7 days prior to their exposure to the ligands resulted in approximately 10% decrease in the reactivity of maleimide in contrast to storage at 20 °C which led to almost 40% of the maleimide being unreactive after the same storage time. Our findings demonstrate that optimization of this reaction, particularly in terms of reactant ratios, can represent a significant increase in the conjugation efficiency and prevent considerable waste of resources.


Assuntos
Imunoconjugados/química , Maleimidas/química , Nanoconjugados/química , Nanopartículas/química , Peptídeos Cíclicos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Compostos de Sulfidrila/química , Química Click , Polietilenoglicóis/química , Anticorpos de Domínio Único/química
4.
Int J Pharm ; 492(1-2): 55-64, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136199

RESUMO

Poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) is an attractive polycation frequently proposed as a non-viral vector for gene therapy. As expected for other cationic carriers, intravenous administration of PDMAEMA can result in its ionic complexation with various negatively charged domains found within the blood. To gain more insight into this polycation hemoreactivity, we followed the binding kinetics of a free form (FF) of fluorescein labelled PDMAEMA (Mn below 15 kDa) in normal human blood using flow cytometry. This in vitro study highlighted that platelets display higher affinity for this polycation compared to red blood cells (RBCs), with an adsorption isotherm characteristics of a specific saturable binding site. PDMAEMA (1-20 µg/mL) exerted a concentration dependent proaggregant effect with a biphasic aggregation of washed platelets. Activation of platelets was also noticed in whole blood with the expression of P-selectin and fibrinogen on platelet surface. Although additional studies would be needed in order to elucidate the mechanism of PDMAEMA mediated activation of platelets, our manuscript provides important information on the hemoreactivity of FF PDMAEMA.


Assuntos
Plaquetas/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Metacrilatos/farmacologia , Nylons/farmacologia , Plaquetas/fisiologia , Células Cultivadas , Eritrócitos/fisiologia , Fibrinogênio/metabolismo , Humanos , Selectina-P/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos
5.
Int J Biol Macromol ; 75: 453-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687477

RESUMO

Electrostatic interactions, mediated by ionic-exchange, between polyethylenimine (PEI) and glucose oxidase (GOx) were used to form GOx-PEI macro-complex, which were evaluated for pH and thermal stability of GOx. Under the experimental conditions, the complex had a dominant GOx presence on its surface and a hydrodynamic diameter of 205 ± 16 nm. Activity was evaluated from 40 to 75 °C, and at pH from 2 to 12. GOx activity in complex was maintained up to 70 °C and it was lost at 75 °C. In contrast, free GOx showed a maximum activity at 50 °C, which was completely lost at 70 °C. This difference, observed by fluorescence analysis, was associated with the compact unfolded structure of GOx in the complex. This GOx stability was not observed under pH variations, and complex formation was only possible at pH ≥ 5 where enzymatic activity was diminished by the presence of PEI.


Assuntos
Glucose Oxidase/metabolismo , Polietilenoimina/metabolismo , Eletricidade Estática , Temperatura , Aspergillus/enzimologia , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Soluções , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA