Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(21): 4514-4527.e14, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757828

RESUMO

Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.


Assuntos
Consanguinidade , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Homozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único , Bancos de Espécimes Biológicos , Genoma Humano , Predisposição Genética para Doença , Reino Unido
2.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34352227

RESUMO

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Assuntos
Genética Populacional/história , Genoma Humano , Animais , Cromossomos Humanos Y/genética , Bases de Dados Genéticas , Pool Gênico , Introgressão Genética , Geografia , História Antiga , Migração Humana , Humanos , Oriente Médio , Modelos Genéticos , Homem de Neandertal/genética , Filogenia , Densidade Demográfica , Seleção Genética , Análise de Sequência de DNA
3.
Nature ; 634(8035): 795-803, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39443775

RESUMO

Biobanks aim to improve our understanding of health and disease by collecting and analysing diverse biological and phenotypic information in large samples. So far, biobanks have largely pursued a population-based sampling strategy, where the individual is the unit of sampling, and familial relatedness occurs sporadically and by chance. This strategy has been remarkably efficient and successful, leading to thousands of scientific discoveries across multiple research domains, and plans for the next wave of biobanks are underway. In this Perspective, we discuss the strengths and limitations of a complementary sampling strategy for future biobanks based on oversampling of close genetic relatives. Such family-based samples facilitate research that clarifies causal relationships between putative risk factors and outcomes, particularly in estimates of genetic effects, because they enable analyses that reduce or eliminate confounding due to familial and demographic factors. Family-based biobank samples would also shed new light on fundamental questions across multiple fields that are often difficult to explore in population-based samples. Despite the potential for higher costs and greater analytical complexity, the many advantages of family-based samples should often outweigh their potential challenges.


Assuntos
Bancos de Espécimes Biológicos , Família , Humanos
4.
Nature ; 633(8030): 608-614, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261734

RESUMO

Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.


Assuntos
Envelhecimento , Predisposição Genética para Doença , Menopausa , Taxa de Mutação , Neoplasias , Ovário , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/genética , Envelhecimento/patologia , Dano ao DNA/genética , Fertilidade/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genoma Humano/genética , Mutação em Linhagem Germinativa/genética , Menarca/genética , Menopausa/genética , Neoplasias/genética , Ovário/metabolismo , Ovário/patologia , Fatores de Tempo , Biobanco do Reino Unido , Reino Unido/epidemiologia
5.
Nature ; 603(7903): 858-863, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322230

RESUMO

Genome-wide sequencing of human populations has revealed substantial variation among genes in the intensity of purifying selection acting on damaging genetic variants1. Although genes under the strongest selective constraint are highly enriched for associations with Mendelian disorders, most of these genes are not associated with disease and therefore the nature of the selection acting on them is not known2. Here we show that genetic variants that damage these genes are associated with markedly reduced reproductive success, primarily owing to increased childlessness, with a stronger effect in males than in females. We present evidence that increased childlessness is probably mediated by genetically associated cognitive and behavioural traits, which may mean that male carriers are less likely to find reproductive partners. This reduction in reproductive success may account for 20% of purifying selection against heterozygous variants that ablate protein-coding genes. Although this genetic association may only account for a very minor fraction of the overall likelihood of being childless (less than 1%), especially when compared to more influential sociodemographic factors, it may influence how genes evolve over time.


Assuntos
Reprodução , Seleção Genética , Mapeamento Cromossômico , Feminino , Heterozigoto , Humanos , Masculino , Fenótipo , Reprodução/genética
6.
Nature ; 600(7890): 675-679, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887591

RESUMO

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Herança Multifatorial , Polimorfismo de Nucleotídeo Único/genética , Grupos Populacionais
7.
Trends Genet ; 39(11): 810-812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596117

RESUMO

Twin and genomic studies indicate that genes play an important role in the development of cognitive ability. However, data limitations have made it difficult to pinpoint specific genes with a large impact. By examining the full gene sequences of >300 000 individuals, Chen et al. find eight such genes.

8.
N Engl J Med ; 388(17): 1559-1571, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37043637

RESUMO

BACKGROUND: Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS: We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS: A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS: Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).


Assuntos
Genômica , Doenças Raras , Criança , Humanos , Exoma , Irlanda/epidemiologia , Reino Unido/epidemiologia , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/genética , Análise de Sequência com Séries de Oligonucleotídeos , Estudos de Associação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Fácies , Transtornos do Comportamento Infantil/diagnóstico , Transtornos do Comportamento Infantil/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética
9.
Nature ; 581(7809): 459-464, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461653

RESUMO

Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous 'knockout' humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.


Assuntos
Genes Essenciais/efeitos dos fármacos , Genes Essenciais/genética , Mutação com Perda de Função/genética , Terapia de Alvo Molecular , Artefatos , Automação , Consanguinidade , Éxons/genética , Mutação com Ganho de Função/genética , Frequência do Gene , Técnicas de Silenciamento de Genes , Heterozigoto , Homozigoto , Humanos , Proteína Huntingtina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doenças Neurodegenerativas/genética , Proteínas Priônicas/genética , Reprodutibilidade dos Testes , Tamanho da Amostra , Proteínas tau/genética
10.
Nature ; 586(7831): 757-762, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057194

RESUMO

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Assuntos
Análise Mutacional de DNA , Análise de Dados , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Atenção à Saúde/estatística & dados numéricos , Deficiências do Desenvolvimento/genética , Doenças Genéticas Inatas/genética , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/diagnóstico , Europa (Continente) , Feminino , Doenças Genéticas Inatas/diagnóstico , Mutação em Linhagem Germinativa/genética , Haploinsuficiência/genética , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Penetrância , Morte Perinatal , Tamanho da Amostra
11.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931049

RESUMO

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Cromatina/genética , Genômica , Humanos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Am J Hum Genet ; 108(11): 2186-2194, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626536

RESUMO

Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Criança , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética
13.
Genet Med ; : 101249, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39243181

RESUMO

PURPOSE: Identifying pathogenic non-coding variants is challenging. A single protein-altering variant is often identified in a recessive gene in individuals with developmental disorders (DD), but the prevalence of pathogenic non-coding 'second hits' in trans with these is unknown. METHODS: In 4,073 genetically undiagnosed rare disease trio probands from the 100,000 Genomes project, we identified rare heterozygous protein-altering variants in recessive DD-associated genes. We identified rare non-coding variants on the other haplotype in introns, untranslated regions (UTRs), promoters, and candidate enhancer regions. We clinically evaluated the top candidates for phenotypic fit, and performed functional testing where possible. RESULTS: We identified 3,761 rare heterozygous loss-of-function or ClinVar pathogenic variants in recessive DD-associated genes in 2,430 probands. For 1,366 (36.3%) of these, we identified at least one rare non-coding variant in trans. Bioinformatic filtering and clinical review, revealed seven to be a good clinical fit. After detailed characterisation, we identified likely diagnoses for three probands (in GAA, NPHP3, and PKHD1) and candidate diagnoses in a further three (PAH, LAMA2, IGHMBP2). CONCLUSION: We developed a systematic approach to uncover new diagnoses involving compound heterozygous coding/non-coding variants and conclude that this mechanism is likely to be a rare cause of DDs.

14.
Nature ; 562(7726): 268-271, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258228

RESUMO

There are thousands of rare human disorders that are caused by single deleterious, protein-coding genetic variants1. However, patients with the same genetic defect can have different clinical presentations2-4, and some individuals who carry known disease-causing variants can appear unaffected5. Here, to understand what explains these differences, we study a cohort of 6,987 children assessed by clinical geneticists to have severe neurodevelopmental disorders such as global developmental delay and autism, often in combination with abnormalities of other organ systems. Although the genetic causes of these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this genome-wide common variant burden by showing, in an independent sample of 728 trios (comprising a child plus both parents) from the same cohort, that this burden is over-transmitted from parents to children with neurodevelopmental disorders. Our common-variant signal is significantly positively correlated with genetic predisposition to lower educational attainment, decreased intelligence and risk of schizophrenia. We found that common-variant risk was not significantly different between individuals with and without a known protein-coding diagnostic variant, which suggests that common-variant risk affects patients both with and without a monogenic diagnosis. In addition, previously published common-variant scores for autism, height, birth weight and intracranial volume were all correlated with these traits within our cohort, which suggests that phenotypic expression in individuals with monogenic disorders is affected by the same variants as in the general population. Our results demonstrate that common genetic variation affects both overall risk and clinical presentation in neurodevelopmental disorders that are typically considered to be monogenic.


Assuntos
Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/genética , Doenças Raras/genética , Transtorno Autístico/genética , Peso ao Nascer/genética , Estatura/genética , Estudos de Casos e Controles , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Inteligência/genética , Desequilíbrio de Ligação , Masculino , Herança Multifatorial/genética , Fenótipo , Esquizofrenia/genética
16.
PLoS Med ; 19(5): e1003981, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587468

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is highly prevalent in British South Asians, yet they are underrepresented in research. Genes & Health (G&H) is a large, population study of British Pakistanis and Bangladeshis (BPB) comprising genomic and routine health data. We assessed the extent to which genetic risk for T2D is shared between BPB and European populations (EUR). We then investigated whether the integration of a polygenic risk score (PRS) for T2D with an existing risk tool (QDiabetes) could improve prediction of incident disease and the characterisation of disease subtypes. METHODS AND FINDINGS: In this observational cohort study, we assessed whether common genetic loci associated with T2D in EUR individuals were replicated in 22,490 BPB individuals in G&H. We replicated fewer loci in G&H (n = 76/338, 22%) than would be expected given power if all EUR-ascertained loci were transferable (n = 101, 30%; p = 0.001). Of the 27 transferable loci that were powered to interrogate this, only 9 showed evidence of shared causal variants. We constructed a T2D PRS and combined it with a clinical risk instrument (QDiabetes) in a novel, integrated risk tool (IRT) to assess risk of incident diabetes. To assess model performance, we compared categorical net reclassification index (NRI) versus QDiabetes alone. In 13,648 patients free from T2D followed up for 10 years, NRI was 3.2% for IRT versus QDiabetes (95% confidence interval (CI): 2.0% to 4.4%). IRT performed best in reclassification of individuals aged less than 40 years deemed low risk by QDiabetes alone (NRI 5.6%, 95% CI 3.6% to 7.6%), who tended to be free from comorbidities and slim. After adjustment for QDiabetes score, PRS was independently associated with progression to T2D after gestational diabetes (hazard ratio (HR) per SD of PRS 1.23, 95% CI 1.05 to 1.42, p = 0.028). Using cluster analysis of clinical features at diabetes diagnosis, we replicated previously reported disease subgroups, including Mild Age-Related, Mild Obesity-related, and Insulin-Resistant Diabetes, and showed that PRS distribution differs between subgroups (p = 0.002). Integrating PRS in this cluster analysis revealed a Probable Severe Insulin Deficient Diabetes (pSIDD) subgroup, despite the absence of clinical measures of insulin secretion or resistance. We also observed differences in rates of progression to micro- and macrovascular complications between subgroups after adjustment for confounders. Study limitations include the absence of an external replication cohort and the potential biases arising from missing or incorrect routine health data. CONCLUSIONS: Our analysis of the transferability of T2D loci between EUR and BPB indicates the need for larger, multiancestry studies to better characterise the genetic contribution to disease and its varied aetiology. We show that a T2D PRS optimised for this high-risk BPB population has potential clinical application in BPB, improving the identification of T2D risk (especially in the young) on top of an established clinical risk algorithm and aiding identification of subgroups at diagnosis, which may help future efforts to stratify care and treatment of the disease.


Assuntos
Diabetes Mellitus Tipo 2 , Povo Asiático , Estudos de Coortes , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Insulina , Paquistão/epidemiologia , Fatores de Risco
18.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31363758

RESUMO

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Assuntos
Encéfalo/anormalidades , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Immunoblotting , Imageamento por Ressonância Magnética , Camundongos , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismo
19.
Twin Res Hum Genet ; 23(2): 137-138, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32482185

RESUMO

I recount early formative experiences with my father, Nick Martin.


Assuntos
Genética Comportamental/história , Comportamento Social/história , História do Século XX , História do Século XXI , Humanos
20.
Mol Biol Evol ; 35(5): 1238-1252, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688544

RESUMO

The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10-9/bp/generation (95% CI 4.1 × 10-9-1.2 × 10-8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.


Assuntos
Distribuição Animal , Ornitorrinco/genética , Animais , Austrália , Feminino , Variação Genética , Endogamia , Masculino , Taxa de Mutação , Dinâmica Populacional , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA