Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 20(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892944

RESUMO

Nowadays, the therapeutic efficiency of small interfering RNAs (siRNA) is still limited by the efficiency of gene therapy vectors capable of carrying them inside the target cells. In this study, siRNA nanocarriers based on low molecular weight chitosan grafted with increasing proportions (5 to 55%) of diisopropylethylamine (DIPEA) groups were developed, which allowed precise control of the degree of ionization of the polycations at pH 7.4. This approach made obtaining siRNA nanocarriers with small sizes (100-200 nm), positive surface charge and enhanced colloidal stability (up to 24 h) at physiological conditions of pH (7.4) and ionic strength (150 mmol L-1) possible. Moreover, the PEGylation improved the stability of the nanoparticles, which maintained their colloidal stability and nanometric sizes even in an albumin-containing medium. The chitosan-derivatives displayed non-cytotoxic effects in both fibroblasts (NIH/3T3) and macrophages (RAW 264.7) at high N/P ratios and polymer concentrations (up to 0.5 g L-1). Confocal microscopy showed a successful uptake of nanocarriers by RAW 264.7 macrophages and a promising ability to silence green fluorescent protein (GFP) in HeLa cells. These results were confirmed by a high level of tumor necrosis factor-α (TNFα) knockdown (higher than 60%) in LPS-stimulated macrophages treated with the siRNA-loaded nanoparticles even in the FBS-containing medium, findings that reveal a good correlation between the degree of ionization of the polycations and the physicochemical properties of nanocarriers. Overall, this study provides an approach to enhance siRNA condensation by chitosan-based carriers and highlights the potential of these nanocarriers for in vivo studies.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Células HeLa , Humanos , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , RNA Interferente Pequeno/metabolismo
2.
Carbohydr Polym ; 216: 332-342, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047074

RESUMO

Chitosan has received a lot of attention as a carrier for small interfering RNA (siRNA), due to its capacity for complexation and intracellular release of these molecules. However, one of its limitations is its insolubility at neutral pH and the tendency towards aggregation of its nanoparticles in isotonic ionic strength. In this study, a series of amphipathic chitosans were synthesized by varying the degree of acetylation (DA) from ˜2 to ˜30 mol% and the degree of substitution (DS) from 5 to 25%. by tertiary amino groups (DEAE) The results showed that the adjustment of these parameters decreases the interparticle interactions mediated by hydrogen bonding to obtain nanoparticles with improved colloidal stability. siRNA-containing nanoparticles of 100 to 150 nm with low polydispersities (0.15-0.2) and slightly positive zeta potentials (˜+ 5 mV) were resistant to aggregation at pH 7.4 and ionic strength of 150 mM. This resistance to aggregation is provided by changes on the nanoparticle surface and highlights the importance of more organized self-assembly in providing colloidal stability at physiological conditions. Additionally, the PEGylation of the most promising vectors conferred favorable physicochemical properties to nanoparticles. The chitosans and their nanoparticles exhibited low toxicity and an efficient cell uptake, as probed by confocal microscopy of rhodamine labeled vectors. The results provide a new approach to overcome the limited stability of chitosan nanoparticles at physiological conditions and show the potential of these amphipathic chitosans as siRNA carriers.


Assuntos
Quitosana/análogos & derivados , Portadores de Fármacos/química , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Tensoativos/química , Anidridos Acéticos/química , Acetilação , Animais , Quitosana/síntese química , Quitosana/metabolismo , Quitosana/toxicidade , Dietilaminas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Fluorescência , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Camundongos , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/toxicidade , Células RAW 264.7 , RNA Interferente Pequeno/química , Rodaminas/química , Tensoativos/síntese química , Tensoativos/metabolismo , Tensoativos/toxicidade
3.
Int J Biol Macromol ; 119: 186-197, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30031084

RESUMO

Chitosan has been indicated as a promising carrier for the preparation of small interfering RNA (siRNA) delivery systems due to its remarkable properties. However, its weak interactions with siRNA molecules makes the condensation of siRNA molecules into nanoparticles difficult. In this work, a non-viral gene delivery system based on diethylaminoethyl chitosan (DEAE-CH) derivatives of varied Mw (25-230 kDa) having a low degree of substitution of 15% was investigated. The presence of secondary and tertiary amino groups strengthened the interaction of siRNA and DEAE-CH derivatives of higher Mw (130 kDa to 230 kDa) and provided the preparation of spherical nanoparticles at low charge ratios (N/P 2 to 3) with low polydispersities (0.15 to 0.2) in physiological ionic strength. Nanoparticles prepared with all derivatives exhibited remarkable silencing efficiencies (80% to 90%) on different cell lines (HeLa, MG-63, OV-3) by adjusting the charge ratios. A selected PEG-folic acid labeled derivative (FA-PEG-DEAE15-CH230) was synthesized and its nanoparticles completely inhibited the mRNA expression level of TNF-α in RAW 264.7 macrophages. The study demonstrates that the insertion of DEAE groups provides improved physical properties to chitosan-siRNA nanoparticles and holds potential for in vivo applications.


Assuntos
Quitosana/química , Etanolaminas/química , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Sobrevivência Celular , Quitosana/análogos & derivados , Quitosana/síntese química , Células HeLa , Humanos , Camundongos , Peso Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Células RAW 264.7 , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA