Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; : e5195, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845018

RESUMO

The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic 1H-[13C] MRS during administration of 13C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct 13C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln 1H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic 1H-[13C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive 13C-birdcage head coil with eight transmit-receive 1H-dipole antennas was used together with a 32-channel 1H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled 13C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-13C]Glu-H4 and [4-13C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-13C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-13C]Glu and [4,5-13C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-13C]Glu and [4,5-13C]Gln could be clearly separated. We have shown that with our setup indirect dynamic 1H-[13C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.

2.
Obesity (Silver Spring) ; 32(7): 1329-1338, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38764181

RESUMO

OBJECTIVE: Obesity is associated with alterations in eating behavior and neurocognitive function. In this study, we investigate the effect of obesity on brain energy utilization, including brain glucose transport and metabolism. METHODS: A total of 11 lean participants and 7 young healthy participants with obesity (mean age, 27 years) underwent magnetic resonance spectroscopy scanning coupled with a hyperglycemic clamp (target, ~180 mg/dL) using [1-13C] glucose to measure brain glucose uptake and metabolism, as well as peripheral markers of insulin resistance. RESULTS: Individuals with obesity demonstrated an ~20% lower ratio of brain glucose uptake to cerebral glucose metabolic rate (Tmax/CMRglucose) than lean participants (2.12 ± 0.51 vs. 2.67 ± 0.51; p = 0.04). The cerebral tricarboxylic acid cycle flux (VTCA) was similar between the two groups (p = 0.64). There was a negative correlation between total nonesterified fatty acids and Tmax/CMRglucose (r = -0.477; p = 0.045). CONCLUSIONS: We conclude that CMRglucose is unlikely to differ between groups due to similar VTCA, and, therefore, the glucose transport Tmax is lower in individuals with obesity. These human findings suggest that obesity is associated with reduced cerebral glucose transport capacity even at a young age and in the absence of other cardiometabolic comorbidities, which may have implications for long-term brain function and health.


Assuntos
Encéfalo , Glucose , Resistência à Insulina , Obesidade , Humanos , Adulto , Obesidade/metabolismo , Masculino , Feminino , Glucose/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Adulto Jovem , Glicemia/metabolismo , Espectroscopia de Ressonância Magnética , Ciclo do Ácido Cítrico , Transporte Biológico , Técnica Clamp de Glucose , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Imageamento por Ressonância Magnética
3.
Brain Sci ; 13(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137114

RESUMO

After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed "long COVID". Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA