RESUMO
BACKGROUND: Among gynaecological malignancies, endometrial cancer (EC) is the most prevalent type of uterine cancer affecting women. This study explored the proteomic profiles of plasma samples obtained from EC patients, those with hyperplasia (Hy), and a control group (CO). A combination of techniques, such as 2D-DIGE, mass spectrometry, and bioinformatics, including pathway analysis, was used to identify proteins with modified expression levels, biomarkers and their associated metabolic pathways in these groups. METHODS: Thirty-four patients, categorized into three groups-10 with EC, 12 with Hy, and 12 CO-between the ages of 46 and 75 years old were included in the study. Untargeted proteomic analysis was carried out using two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS: In all three groups, 114 proteins that were significantly (p ≤ 0.05 and fold change ≥ 1.5) altered were successfully identified using peptide mass fingerprints (PMFs). Compared with those in the control group (CO), the EC samples had 85 differentially expressed proteins (39 upregulated and 46 downregulated), and in the Hy group, 81 proteins were dysregulated (40 upregulated and 41 downregulated) compared to those in the CO group, while 33 proteins exhibited differential regulation (12 upregulated and 21 downregulated) in the EC plasma samples compared to those in the Hy group. Vitamin D binding protein and complement C3 distinguished Hy and EC from CO with the greatest changes in expression. Among the differentially expressed proteins identified, enzymes with catalytic activity represented the largest group (42.9%). In terms of biological processes, most of the proteins were involved in cellular processes (28.8%), followed by metabolic processes (16.7%). STRING analysis for protein interactions revealed that the significantly differentially abundant proteins in the three groups are involved in three main biological processes: signalling of complement and coagulation cascades, regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth factor binding proteins (IGFBPs), and plasma lipoprotein assembly, remodelling, and clearance. CONCLUSION: The identified plasma protein markers have the potential to serve as biomarkers for differentiating between EC and Hy, as well as for early diagnosis and monitoring of cancer progression.
Assuntos
Biomarcadores Tumorais , Neoplasias do Endométrio , Proteômica , Humanos , Feminino , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Pessoa de Meia-Idade , Idoso , Proteômica/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Hiperplasia Endometrial/sangue , Hiperplasia Endometrial/metabolismo , Hiperplasia Endometrial/patologia , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Proteoma/metabolismoRESUMO
Liraglutide, a type2 diabetes mellitus (T2DM)-related treatment, improves glycemic control and reduces the risks of adverse cardiovascular events in T2DM patients. However, the underlying mechanisms of the above-mentioned beneficial effects of Liraglutide are not well understood. To have better understanding of these mechanisms, we aimed to study the metabolic impacts of Liraglutide on the metabolome and corresponding pathways in T2DM patients, especially metabolism plays a very fundamental role in health and diseases and is influenced by drugs. In this study, plasma samples collected from T2DM patients (n = 20) and taken pre- and post-Liraglutide treatment were used for untargeted metabolomics analyses, including metabolome profiling and metabolic pathway/network analyses. The metabolome profiling analyses identified 93 endogenous metabolites that were significantly affected by Liraglutide treatment where 49 and 44 metabolites were up and down regulated, respectively. Liraglutide caused metabolic alterations impacting metabolic pathways such as pentose and glucuronate interconversion and alanine, aspartate and glutamate metabolism in T2DM patients. Since the last-mentioned pathways are affected by Liraglutide, it could explain partially the overall beneficial effects of Liraglutide in T2DM, especially that glucuronate interconversion pathway is known by its important roles in eliminating toxic and undesirable substances from the human body to maintain good health status. In addition, the metabolism of amino acids induced by Liraglutide could improve the function of immune cells, strengthening the immunity of T2DM patients. Also, Liraglutide induced the level of other metabolites that help in the defense mechanism against oxidative events. Overall, the findings of this study provide a deeper understanding of the underlying mechanisms involved in the beneficial effects of Liraglutide in T2DM from the metabolic aspect.
RESUMO
Diabetes mellitus is a chronic multisystem disease with a high global prevalence. The glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide is known to lower glucose levels and reduce weight. However, the mechanisms underlying the benefits of liraglutide treatment in patients with type 2 diabetes mellitus (T2DM) remain unclear. Twelve male patients with T2DM (pre and post liraglutide treatment) and HbA1c between 8% and 11% were recruited. In the present study, a two-dimensional difference gel electrophoresis (2D-DIGE) matrix-assisted laser desorption/ionization-time of flight (MALDI TOF) mass spectrometric approach combined with bioinformatics and network pathway analysis was used to explore the urine proteomic profile. The mean age of the patients was 52.4 ± 7.5 years. After treatment with liraglutide, a statistically significant change (p < 0.006) was observed in HbA1c with no significant changes in body weight or markers of dyslipidemia. Two-dimensional difference gel electrophoresis identified significant changes (≥1.5-fold change, ANOVA, p ≤ 0.05) in 32 proteins (4 down- and 28 upregulated) in liraglutide post treatment compared to the pre-treatment state. Albumin, serotransferrin, metallothionein-2 (MT-2), and keratins K1 and K10 were found to be upregulated after liraglutide treatment. The patients showed significant improvement in glycemic control after the 12-week treatment with liraglutide. The renoprotective effect of liraglutide may be linked to the increased urinary abundance of MT-2 and the decreased abundance of zinc alpha 2-glycoprotein (ZAG) and Alpha-1 antitrypsin (α1-AT). More studies are needed to elucidate the molecular mechanisms behind the renoprotective effects of liraglutide.
RESUMO
Hyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients' metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.
Assuntos
Imunoglobulina E , Síndrome de Job , Humanos , Fosfoglucomutase/metabolismo , Fator de Transcrição STAT3/metabolismo , Multiômica , Estudos Prospectivos , Síndrome de Job/diagnóstico , Mutação , Citocinas/metabolismoRESUMO
Breast cancer is the most prevalent form of cancer among women. The microenvironment of a cancer tumor is surrounded by various cells, including the microbiota. An imbalance between microbes and their host may contribute to the development and spread of breast cancer. Therefore, the objective of this study is to investigate the influence of Enterococcus faecalis on a breast cancer cell line (MCF-7) to mimic the luminal A subtype of breast cancer, using an untargeted proteomics approach to analyze the proteomic profiles of breast cancer cells after their treatment with E. faecalis in order to understand the microbiome and its role in the development of cancer. The breast cancer cell line MCF-7 was cultured and then treated with a 10% bacterial supernatant at two time points (24 h and 48 h) at 37 °C in a humidified incubator with 5% CO2. Proteins were then extracted and separated using two-dimensional difference (2D-DIGE) gel electrophoresis, and the statistically significant proteins (p-value < 0.05, fold change > 1.5) were identified via matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The protein fingerprints showed a differential protein expression pattern in the cells treated with E. faecalis for 24 and 48 h compared with the control. We found 58 statistically significant proteins changes in the MCF-7 breast cancer cells affected by E. faecalis. Kilin and transgelin were upregulated after 24 h of treatment and could be used as diagnostic and prognostic markers for breast cancer. In addition, another protein involved in the inhibition of cell proliferation was coiled-coil domain-containing protein 154. The protein markers identified in this study may serve as possible biomarkers for breast cancer progression. This promotes their future uses as important therapeutic goals in the treatment and diagnosis of cancer and increases our understanding of the breast microbiome and its role in the development of cancer.
Assuntos
Neoplasias da Mama , Enterococcus faecalis , Feminino , Humanos , Células MCF-7 , Proteômica/métodos , Secretoma , Eletroforese em Gel Bidimensional/métodos , Neoplasias da Mama/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microambiente TumoralRESUMO
Effluents of textile industries caused serious environmental problem throughout the world. In this study, a total of 23 bacterial strains from five bacterial species were isolated from the dye effluent. Of these strains, a unique and novel Enterobacter aerogenes ES014 was utilized for dye decolourization and toxicity analysis. The selected strain could effectively decolourize three selected azo dyes. It showed the capability for decolourizing acid orange (82.3 ± 3.6%), methyl orange (78.2 ± 3.3%), and congo red (81.5 ± 3.2%). The selected bacterial strain significantly decolourized 100 mg/L acid orange at 35 °C, pH 7.5 with 6% sodium chloride concentration. Most of the tested nitrogen and carbon sources effectively enhanced decolourization process. It showed the ability to decolourize acid orange in the culture medium containing 1.5% glucose (100 ± 2.8%) and 0.8% beef extract (100 ± 3.1%). A laboratory-scale batch bioreactor was used to decolourize azo dye at optimized culture conditions. The decolourizing ability improved with 100 mL/h hydraulic retention time. The treated wastewater quality was improved due to sharp depletion of Total Dissolved Solids (TDS), pH, Chemical Oxygen Demand (COD), alkalinity and sulphate concentration. The selected bacteria has the potential to produce dye degrading laccase. Laccase was detected during fermentation process in batch bioreactor as a key enzyme for decolourization produced by E. aerogenes ES014. Phytotoxicity and acute toxicity analysis were performed using Arachis hypogaea (pea nut) seed and first instar larvae of Artemia parthenogenetica (brine shrimp). The seed germination rate of treated wastewater was improved (94.3 ± 1.8%) and enhanced survival rate (91.7 ± 2.9%) in the first instar Artemia larvae treated with wastewater after 24 h. Overall, E. aerogenes ES014, might be a promising bacterial strain for the treatment of textile effluents with high azo dye concentrations.
Assuntos
Enterobacter aerogenes , Águas Residuárias , Compostos Azo/toxicidade , Bactérias , Biodegradação Ambiental , Reatores Biológicos , Corantes/toxicidade , Águas Residuárias/microbiologiaRESUMO
Bone mass reduction due to an imbalance in osteogenesis and osteolysis is characterized by low bone mineral density (LBMD) and is clinically classified as osteopenia (ON) or osteoporosis (OP), which is more severe. Multiple biomarkers for diagnosing OP and its progression have been reported; however, most of these lack specificity. This cohort study aimed to investigate sensitive and specific LBMD-associated protein biomarkers in patients diagnosed with ON and OP. A label-free liquid chromatography-mass spectrometry (LC-MS) proteomics approach was used to analyze serum samples. Patients' proteomics profiles were filtered for potential confounding effects, such as age, sex, chronic diseases, and medication. A distinctive proteomics profile between the control, ON, and OP groups (Q2 = 0.7295, R2 = 0.9180) was identified, and significant dysregulation in a panel of proteins (n = 20) was common among the three groups. A comparison of these proteins showed that the levels of eight proteins were upregulated in ON, compared to those in the control and the OP groups, while the levels of eleven proteins were downregulated in the ON group compared to those in the control group. Interestingly, only one protein, myosin heavy chain 14 (MYH14), showed a linear increase from the control to the ON group, with the highest abundance in the OP group. A significant separation in the proteomics profile between the ON and OP groups (Q2 = 0.8760, R2 = 0.991) was also noted. Furthermore, a total of twenty-six proteins were found to be dysregulated between the ON and the OP groups, with fourteen upregulated and twelve downregulated proteins in the OP, compared to that in the ON group. Most of the identified dysregulated proteins were immunoglobulins, complement proteins, cytoskeletal proteins, coagulation factors, and various enzymes. Of these identified proteins, the highest area under the curve (AUC) in the receiver operating characteristic (ROC) analysis was related to three proteins (immunoglobulin Lambda constant 1 (IGLC1), RNA binding protein (MEX3B), and fibulin 1 (FBLN1)). Multiple reaction monitoring (MRM), LC-MS, was used to validate some of the identified proteins. A network pathway analysis of the differentially abundant proteins demonstrated dysregulation of inflammatory signaling pathways in the LBMD patients, including the tumor necrosis factor (TNF), toll-like receptor (TL4), and interferon-γ (IFNG) signaling pathways. These results reveal the existence of potentially sensitive protein biomarkers that could be used in further investigations of bone health and OP progression.
Assuntos
Osteoporose , Proteômica , Biomarcadores , Densidade Óssea , Cromatografia Líquida/métodos , Estudos de Coortes , Humanos , Osteoporose/metabolismo , Proteínas de Ligação a RNARESUMO
INTRODUCTION: Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. OBJECTIVES: The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. METHODS: A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. RESULTS: A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. CONCLUSION: Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.
Assuntos
Biomarcadores , Fibrose Cística/genética , Fibrose Cística/metabolismo , Metaboloma , Metabolômica , Mutação , Estudos de Casos e Controles , Cromatografia Líquida , Fibrose Cística/diagnóstico , Humanos , Espectrometria de Massas , Metabolômica/métodos , Testes de Função Respiratória , Índice de Gravidade de DoençaRESUMO
Sequencing batch reactor (SBR) is useful in removal of both non-biodegradable and biodegradable contaminants from wastewater. The main aim of the present investigation was to evaluate the potential of biocatalyst strain RA-14 on heavy metal removal under SBR. The selected strain was screened from the soil sediment contaminated with heavy metals. It was able to survive at different (Hg2+, Pb2+, Zn2+, Cu2+, Cd2+ and Ni2+) heavy metals (>500 ppm). The bacterial strain RA-14 showed maximum bioaccumulation potential than other strains. Heavy metal resistance patterns of Pb2+ > Cu2 > Cd2+ > Hg2+, Ni2+ and Zn2 was observed. Strain RA-14 was resistant to penicillin-G, nalidixic acid, ceftazidime, cefotaxime, kanamycin and ampicillin. The results revealed that bioaccumulation activities were improved at pH 7.0 (83.2 ± 1.8%), 40 °C (89.34 ± 3%) and affected at higher pH values and temperature. The results showed that contact time and initial Lead concentration was also affected Lead accumulation. The heavy metal tolerant strain RA-14 was further investigated towards heavy metal removal in SBR. Heavy metal was removed in SBR within 10 h of hydraulic retention time. Heavy metal removal was high at 2 mg/L (0.33 mg/L Cu2+, 0.33 mg/L Hg2+, 0.33 mg/L Pb2+, 0.33 mg/L Zn2+, 0.33 mg/L Cd2+ and 0.33 mg/L Ni2+) heavy metals. Total nitrogen, biological oxygen demand (BOD) and chemical oxygen demand (COD) of treated water in SBR was removed and the removal efficacy was 91.3 ± 2.1%, 97.6 ± 3.3%, and 94.3 ± 4.4%, respectively in 10 h hydraulic retention time. However, the efficiency of BOD, COD and total nitrogen content removal was decreased, due to the reduced metabolic process of bacteria after 10 h. The SBR reactor proved to be an efficient method for the treatment of various heavy metals from the wastewater.
Assuntos
Metais Pesados , Preparações Farmacêuticas , Chumbo , Metais Pesados/análise , Pseudomonas aeruginosa , Águas ResiduáriasRESUMO
Hyperthyroidism, which is characterized by increased circulating thyroid hormone levels, alters the body's metabolic and systemic hemodynamic balance and directly influences renal function. In this study, the urinary proteome of patients with hyperthyroidism was characterized using an untargeted proteomic approach with network analysis. Urine samples were collected from nine age-matched patients before and after carbimazole treatment. Differences in the abundance of urinary proteins between hyperthyroid and euthyroid states were determined using a 2D-DIGE coupled to MALDI-TOF mass spectrometry. Alterations in the abundance of urinary proteins, analyzed via Progenesis software, revealed a statistically significant difference in abundance in a total of 40 spots corresponding to 32 proteins, 25 up and 7 down (≥1.5-fold change, ANOVA, p ≤ 0.05). The proteins identified in the study are known to regulate processes associated with cellular metabolism, transport, and acute phase response. The notable upregulated urinary proteins were serotransferrin, transthyretin, serum albumin, ceruloplasmin, alpha-1B-glycoprotein, syntenin-1, and glutaminyl peptide cyclotransferase, whereas the three notable downregulated proteins were plasma kallikrein, protein glutamine gamma-glutamyl transferase, and serpin B3 (SERPINB3). Bioinformatic analysis using ingenuity pathway analysis (IPA) identified the dysregulation of pathways associated with cellular compromise, inflammatory response, cellular assembly, and organization and identified the involvement of the APP and AKT signaling pathways via their interactions with interleukins as the central nodes.
Assuntos
Hipertireoidismo/metabolismo , Proteoma , Proteômica , Adulto , Biomarcadores , Pesos e Medidas Corporais , Biologia Computacional/métodos , Feminino , Humanos , Hipertireoidismo/etiologia , Hipertireoidismo/terapia , Masculino , Pessoa de Meia-Idade , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Eletroforese em Gel Diferencial BidimensionalRESUMO
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Assuntos
Cannabis/química , Transtorno Depressivo/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Proteínas Tirosina Quinases/sangue , Proteômica , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/sangue , Doença Aguda , Transtorno Depressivo/sangue , Transtorno Depressivo/diagnóstico , Humanos , Masculino , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/químicaRESUMO
Mucoviscidosis of the respiratory, gastrointestinal, and genitourinary tracts is the major pathology in patients with cystic fibrosis (CF), a lethal monogenic panethnic and multisystemic disease most commonly identified in Caucasians. Currently, the measurement of immuno reactive trypsinogen in dry blood spots (DBSs) is the gold-standard method for initial newborn screening for CF, followed by targeted CF transmembrane regulator (CFTR) mutation analysis, and ultimate confirmation with abnormally elevated sweat chloride. Previous metabolomics studies in patients with CF reported on different biomarkers such as breath 2-aminoacetophenone produced during acute and chronic infection in human tissues, including the lungs of CF patients. Herein, we used liquid and gas chromatography-mass spectrometry-based targeted metabolomics profiling to identify potentially reliable, sensitive, and specific biomarkers in DBSs collected from 69 young and adult people including CF patients (n = 39) and healthy control (n = 30). A distinctive metabolic profile including 26 significantly differentially expressed metabolites involving amino acids, glycolysis, mitochondrial and peroxisomal metabolism, and sorbitol pathways was identified. Specifically, the osmolyte (sorbitol) was remarkably downregulated in CF patients compared to healthy controls indicating perturbation in the sorbitol pathway, which may be responsible for the mucoviscidosis seen in patients with CF. The significance of our findings is supported by the clinical utility of inhaled mannitol and hypertonic saline in patients with CF. The systemic administration of sorbitol in such patients may confer additional benefits beyond the respiratory system, especially in those with misfolded CFTR proteins.
Assuntos
Fibrose Cística , Adulto , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Recém-Nascido , Metaboloma , Metabolômica , Mutação , Triagem NeonatalRESUMO
Chinese hamster ovary (CHO) cell lines are the most widely used in vitro cells for research and production of recombinant proteins such as rhGH, tPA, and erythropoietin. We aimed to investigate changes in protein profiles after cryopreservation using 2D-DIGE MALDI-TOF MS and network pathway analysis. The proteome changes that occur in CHO cells between freshly prepared cells and cryopreserved cells with and without Me2SO were compared to determine the key proteins and pathways altered during recovery from cryopreservation. A total of 54 proteins were identified and successfully matched to 37 peptide mass fingerprints (PMF). 14 protein spots showed an increase while 23 showed decrease abundance in the Me2SO free group compared to the control. The proteins with increased abundance included vimentin, heat shock protein 60 kDa, mitochondrial, heat shock 70 kDa protein 9, protein disulfide-isomerase A3, voltage-dependent anion-selective channel protein 2. Those with a decrease in abundance were myotubularin, glutathione peroxidase, enolase, phospho glyceromutase, chloride intracellular channel protein 1. The main canonical functional pathway affected involved the unfolded protein response, aldosterone Signaling in Epithelial Cells, 14-3-3-mediated signaling. 2D-DIGE MALDI TOF mass spectrometry and network pathway analysis revealed the differential proteome expression of FreeStyle CHO cells after cryopreservation with and without 5% Me2SOto involve pathways related to post-translational modification, protein folding and cell death and survival (score = 56, 22 focus molecules). This study revealed, for the first time to our knowledge the proteins and their regulated pathways involved in the cryoprotective action of 5% Me2SO. The use of 5% Me2SO as a cryoprotectant maintained the CHO cell proteome in the cryopreserved cells, similar to that of fresh CHO cells.
Assuntos
Criopreservação , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Proteoma/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Proteoma/metabolismo , ProteômicaRESUMO
Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene. Despite significant advances in the management of CF patients, novel disease-related biomarkers and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total of 198 proteins identified, 134 showed a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS) showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1, Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines, ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes. The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response, IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their transport mechanism.
Assuntos
Fibrose Cística/sangue , Fibrose Cística/genética , Proteoma , Transdução de Sinais/genética , Transcriptoma , Adolescente , Adulto , Biomarcadores/metabolismo , Criança , Estudos de Coortes , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Mutação , Mapas de Interação de Proteínas , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletroforese em Gel Diferencial Bidimensional/métodos , Adulto JovemRESUMO
Thyroid hormones critically modulate body homeostasis and haemostasis by regulating energy and metabolism. Previous studies have focused on individual pathways or proteins that are affected by increases in thyroid hormone levels, while an overall plasma proteomic signature of this increased level is lacking. Herein, an integrated untargeted proteomic approach with network analysis was used to identify changes in circulating proteins in the plasma proteome between hyperthyroid and euthyroid states. Plasma from 10 age-matched subjects at baseline (hyperthyroid) and post treatment with carbimazole (euthyroid) was compared by difference gel electrophoresis (DIGE) and matrix-assisted laser desorption/ionization time of flight (MALDI TOF) mass spectrometry (MS). A total of 20 proteins were identified with significant difference in abundance (analysis of variance (ANOVA) test, p ≤ 0.05; fold-change ≥ 1.5) between the two states (12 increased and 8 decreased in abundance in the hyperthyroid state). Twelve protein spots corresponding to ten unique proteins were significantly more abundant in the hyperthyroid state compared with the euthyroid state. These increased proteins were haptoglobin (HP), hemopexin (HPX), clusterin (CLU), apolipoprotein L1 (APOL1), alpha-1-B glycoprotein (A1BG), fibrinogen gamma chain (FGG), Ig alpha-1 chain C region (IGHA1), complement C6 (C6), leucine rich alpha 2 glycoprotein (LRG1), and carboxypeptidase N catalytic chain (CPN1). Eight protein spots corresponding to six unique proteins were significantly decreased in abundance in the hyperthyroid samples compared with euthyroid samples. These decreased proteins were apolipoprotein A1 (APOA1), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), plasminogen (PLG), alpha-1 antitrypsin (SERPINA1), fibrinogen beta chain (FGB), and complement C1r subcomponent (C1R). The differentially abundant proteins were investigated by ingenuity pathway analysis (IPA). The network pathway identified related to infectious disease, inflammatory disease, organismal injury and abnormalities, and the connectivity map focused around two central nodes, namely the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways. The plasma proteome of patients with hyperthyroidism revealed differences in the abundance of proteins involved in acute phase response signaling, and development of a hypercoagulable and hypofibrinolytic state. Our findings enhance our existing knowledge of the altered proteins and associated biochemical pathways in hyperthyroidism.
Assuntos
Proteínas Sanguíneas/metabolismo , Hipertireoidismo , Proteômica , Adulto , Biomarcadores/sangue , Feminino , Humanos , Hipertireoidismo/sangue , Hipertireoidismo/tratamento farmacológico , Masculino , Pessoa de Meia-IdadeRESUMO
Camel milk is traditionally known to have medicinal properties and many potential health benefits. Natural milk contains many soluble proteins and nanoparticles, such as a milk fat globule membrane (MFGM), a three-layered membrane covering of milk fat globule mainly composed of proteins and lipids, which plays an important role in human health. MFGM proteins account for 1%-4% of total milk proteins, and their nutritive value and distribution depends on the different breeds. The differential composition of these membrane proteins among different camel breeds has not been explored. The current study, therefore, aimed to quantitatively analyze and compare the MFGM proteome between the milk produced by the two most common Saudi camel breeds, Camelus dromedarius: Safra and Wadha. Two-dimensional difference in gel electrophoresis (2D-DIGE) and mass spectrometry analysis revealed a total of 44 MFGM proteins that were identified with a significant difference in abundance (p ≤ 0.05; fold change ≥ 1.5) between the two breeds. Thirty-one proteins were up-regulated and 13 proteins were down-regulated in the Safra breed compared to the Wadha breed. The proteins identified with an increased abundance included α-lactalbumin, lactadherin, and annexin a8, whereas the down-regulated proteins included butyrophilin subfamily 1 member a1, lactotransferrin, and vinculin. The differentially abundant proteins were analyzed by the UNIPROT system and gene ontology (GO) to reveal their associations with known biological functions and pathways. Enzyme-linked immunosorbent assay (ELISA) confirmed the 2D-DIGE findings of butyrophilin (BTN) and α-lactalbumin (α-LA) levels obtained from Safra and Wadha breeds.
Assuntos
Camelus/metabolismo , Glicolipídeos/química , Glicoproteínas/química , Gotículas Lipídicas/química , Proteínas de Membrana , Proteoma , Proteômica , Animais , Cruzamento , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas , Proteômica/métodos , Reprodutibilidade dos Testes , Eletroforese em Gel Diferencial BidimensionalRESUMO
Metabolic dysfunction associated with obesity threatens to inundate health care resources by increasing the incidences of obesity-related diseases. The aim of the present study was to investigate the changes in the urinary proteome of 18 individuals classified into metabolically healthy obese (MHO) and metabolically unhealthy obese (MUHO) patients. Proteome analysis was performed using the two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS). Upon analysis, a total of 54 proteins were found to be affected with ≥1.5-fold change (ANOVA, p ≤ 0.05), of which 44 proteins were upregulated and 10 proteins were downregulated. These differentially abundant proteins were related to nuclear factor κB (NF-κB) and p38 mitogen-activated protein (MAP) kinase pathways and were involved in cellular compromise, inflammatory response, and cancer. Proteins involved in inflammation (fibrinogen alpha (FIBA), serotransferrin (TRFE, and kininogen-1 (KNG1)) and insulin resistance (ADP-ribosylation factor (ARF)-like protein 15 (ARL15) and retinol-binding protein 4 (RET4)) were found to be significantly increased in the urine samples of MUHO compared to MHO patients. Investigating the effects of obesity on urinary proteins can help in developing efficient diagnostic procedures for early detection and prevention of obesity-related complications.
Assuntos
Obesidade/urina , Proteinúria/urina , Proteoma , Proteômica , Adulto , Biomarcadores , Feminino , Nível de Saúde , Humanos , Masculino , Obesidade/complicações , Mapeamento de Interação de Proteínas , Proteinúria/etiologia , Proteômica/métodosRESUMO
Prolonged dexamethasone (Dex) administration leads to serious adverse and decrease brain and heart size, muscular atrophy, hemorrhagic liver, and presence of kidney cysts. Herein, we used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous identification of changes in proteomes of the major organs in Sprague-Dawley (SD rats post Dex treatment. The comparative and quantitative proteomic analysis of the brain, heart, muscle, liver, and kidney tissues revealed differential expression of proteins (n = 190, 193, 39, 230, and 53, respectively) between Dex-treated and control rats. Functional network analysis using ingenuity pathway analysis (IPA revealed significant differences in regulation of metabolic pathways within the morphologically changed organs that related to: (i) brain-cell morphology, nervous system development, and function and neurological disease; (ii) heart-cellular development, cellular function and maintenance, connective tissue development and function; (iii) skeletal muscle-nucleic acid metabolism, and small molecule biochemical pathways; (iv) liver-lipid metabolism, small molecular biochemistry, and nucleic acid metabolism; and (v) kidney-drug metabolism, organism injury and abnormalities, and renal damage. Our study provides a comprehensive description of the organ-specific proteomic profilesand differentially altered biochemical pathways, after prolonged Dex treatement to understand the molecular basis for development of side effects.
Assuntos
Dexametasona/farmacologia , Proteoma/efeitos dos fármacos , Proteômica , Animais , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes , Masculino , Especificidade de Órgãos , Proteômica/métodos , Ratos , Transdução de Sinais , Espectrometria de Massas em TandemRESUMO
Proteomic methods have great potential to aid our understanding of the functional and pathological roles of adipose tissue. A critical initial step in the proteomic studies is the efficient isolation of proteins before conducting detailed analysis. In this study, three different methods were used for precipitating proteins; we analyzed samples from visceral adipose tissue, subcutaneous adipose tissue, and stromal visceral fraction extracts after chloroform/methanol, acetone, and trichloroacetic acid precipitation. The proteins recovered after the precipitation steps were examined by 2D-DIGE. Statistical analyses were carried out using simple linear regression analyses and R2 values were calculated for the intra- and inter-method comparisons. We found that all three precipitation methods provided highly reproducible protein spots that were recovered when run in duplicate using the same method of precipitation, irrespective of whether it was solvent (R2 = 0.85-0.98) or acid-based (R2 = 0.80-0.96). A higher variation and poor correlation was noted for the recovered protein spots when comparisons were made between the methods (R2 = 0.40-0.88) and also when the same method was compared between different sample types. In this study, TCA-precipitated samples were enriched in lower molecular mass proteins compared to the samples extracted by solvent-based precipitation methods.
RESUMO
Thyroid hormone is a potent stimulator of metabolism, playing a critical role in regulating energy expenditure and in key physiological mechanisms, such as growth and development. Although administration of thyroid hormone in the form of levo thyroxine (l-thyroxine) has been used to treat hypothyroidism for many years, the precise molecular basis of its physiological actions remains uncertain. Our objective was to define the changes in circulating protein levels that characterize alterations in thyroid hormone status. To do this, an integrated untargeted proteomic approach with network analysis was used. This study included 10 age-matched subjects with newly diagnosed overt hypothyroidism. Blood was collected from subjects at baseline and at intervals post-treatment with l-thyroxine until they reached to euthyroid levels. Plasma protein levels were compared by two-dimensional difference in gel electrophoresis (2D-DIGE) pre- and post-treatment. Twenty differentially expressed protein spots were detected. Thirteen were identified, and were found to be unique protein sequences by MALDI-TOF mass spectrometry. Ten proteins were more abundant in the hypothyroid vs. euthyroid state: complement C2, serotransferrin, complement C3, Ig κ chain C region, α-1-antichymotrypsin, complement C4-A, haptoglobin, fibrinogen α chain, apolipoprotein A-I, and Ig α-1 chain C region. Three proteins were decreased in abundance in the hypothyroid vs. euthyroid state: complement factor H, paraneoplastic antigen-like protein 6A, and α-2-macroglobulin. The differentially abundant proteins were investigated by Ingenuity Pathway Analysis (IPA) to reveal their associations with known biological functions. Their connectivity map included interleukin-6 (IL-6) and tumour necrosis factor α (TNF-α) as central nodes and the pathway identified with the highest score was involved in neurological disease, psychological disorders, and cellular movement. The comparison of the plasma proteome between the hypothyroid vs euthyroid states revealed differences in the abundance of proteins involved in regulating the acute phase response.