Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1965-1976, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516985

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.


Assuntos
Medição da Troca de Deutério , Fator Estimulador de Colônias de Granulócitos , Humanos , Deutério/química , Medição da Troca de Deutério/métodos , Excipientes/química , Fator Estimulador de Colônias de Granulócitos/química , Espectrometria de Massas/métodos , Proteínas/química
2.
Pharm Res ; 40(6): 1317-1328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949371

RESUMO

PURPOSE: Peptides are an important class of therapeutics. Their quality is evaluated using a series of analytical tests, many of which depend on well-characterized reference standards to determine identity, purity, and strength. OBJECTIVE: Discuss approaches to producing peptide reference standards, including vialing, lyophilization, analytical testing and stability studies. METHODS: Case studies are used to illustrate analytical approaches to characterize reference standards, including methods for value assignment, content uniformity, and identity testing. Methods described include NMR, mass spectrometry, and chromatography techniques for identity testing and HPLC and GC methods for assessing peptide content and impurities. RESULTS: This report describes the analytical strategy used to establish peptide reference standard and illustrates how results from multiple labs are integrated to assign a value to the final lyophilized vial. A two-step process for value assignment is described, which uses a mass balance approach to assign a quantitative value to a bulk peptide material. The bulk material is then used as a standard to assign a final value to the vialed material. Testing to confirm peptide identity and to ensure consistency of the vialed material is also described. Considerations for addressing variability, identifying outliers, and implementing stability studies are also presented. CONCLUSION: The methods and case studies described provide a benchmark for best practices in establishing the preparation, analytical testing, handling, and storage of peptide reference standards for the pharmaceutical industry. Some peptide features, such as chiral or isobaric amino acids, may require additional techniques to ensure a full characterization of the peptide reference standard.


Assuntos
Peptídeos , Peptídeos/análise , Padrões de Referência , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Espectroscopia de Ressonância Magnética
3.
Mol Pharm ; 19(9): 3242-3255, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35948076

RESUMO

Structure-function relationships in proteins refer to a trade-off between stability and bioactivity, molded by evolution of the molecule. Identifying which protein amino acid residues jeopardize global or local stability for the benefit of bioactivity would reveal residues pivotal to this structure-function trade-off. Here, we use 15N-1H heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to probe the microenvironment and dynamics of residues in granulocyte colony-stimulating factor (G-CSF) through thermal perturbation. From this analysis, we identified four residues (G4, A6, T133, and Q134) that we classed as significant to global stability, given that they all experienced large environmental and dynamic changes and were closely correlated to each other in their NMR characteristics. Additionally, we observe that roughly four structural clusters are subject to localized conformational changes or partial unfolding prior to global unfolding at higher temperature. Combining NMR observables with structure relaxation methods reveals that these structural clusters concentrate around loop AB (binding site III inclusive). This loop has been previously implicated in conformational changes that result in an aggregation prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal to an opening motion of loop AB, a change that is possibly also important for function. Hence, we present here an approach to profiling residues in order to highlight their potential roles in the two vital characteristics of proteins: stability and bioactivity.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Proteínas , Fator Estimulador de Colônias de Granulócitos/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
4.
Mol Pharm ; 19(2): 616-629, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34965730

RESUMO

The protein engineering and formulation of therapeutic proteins for prolonged shelf-life remain a major challenge in the biopharmaceutical industry. Understanding the influence of mutations and formulations on the protein structure and dynamics could lead to more predictive approaches to their improvement. Previous intrinsic fluorescence analysis of the chemically denatured granulocyte colony-stimulating factor (G-CSF) suggested that loop AB could subtly reorganize to form an aggregation-prone intermediate state. Hydrogen deuterium exchange mass spectrometry (HDX-MS) has also revealed that excipient binding increased the thermal unfolding transition midpoint (Tm) by stabilizing loop AB. Here, we have combined protein engineering with biophysical analyses and HDX-MS to reveal that increased exchange in a core region of the G-CSF comprising loop AB (ABI, a small helix, ABII) and loop CD packed onto helix B and the beginning of loop BC leads to a decrease in Tm and higher aggregation rates. Furthermore, some mutations can increase the population of the aggregation-prone conformation within the native ensemble, as measured by the greater local exchange within this core region.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Medição da Troca de Deutério/métodos , Excipientes/química , Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/genética , Conformação Proteica , Engenharia de Proteínas , Proteínas
5.
Mol Pharm ; 17(12): 4637-4651, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33112626

RESUMO

Assuring the stability of therapeutic proteins is a major challenge in the biopharmaceutical industry, and a better molecular understanding of the mechanisms through which formulations influence their stability is an ongoing priority. While the preferential exclusion effects of excipients are well known, the additional presence and impact of specific protein-excipient interactions have proven to be more elusive to identify and characterize. We have taken a combined approach of in silico molecular docking and hydrogen deuterium exchange-mass spectrometry (HDX-MS) to characterize the interactions between granulocyte colony-stimulating factor (G-CSF), and some common excipients. These interactions were related to their influence on the thermal-melting temperatures (Tm) for the nonreversible unfolding of G-CSF in liquid formulations. The residue-level interaction sites predicted in silico correlated well with those identified experimentally and highlighted the potential impact of specific excipient interactions on the Tm of G-CSF.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Filgrastim/química , Espectrometria de Massa com Troca Hidrogênio-Deutério , Simulação de Acoplamento Molecular , Estabilidade Proteica , Desdobramento de Proteína
6.
Mol Pharm ; 16(2): 744-755, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565948

RESUMO

Multidomain biotherapeutic proteins present additional behavioral and analytical challenges for the optimization of their kinetic stability by formulation. Tissue-type plasminogen activator (tPA) comprises six protein domains that exhibit a complex and pH-dependent thermal unfolding profile, due to partially independent domain unfolding. Here we have used tPA as a model for evaluating the relationships between various thermal unfolding and aggregation parameters in multidomain proteins. We show that changes in the thermal unfolding profile of tPA were parametrized by the overall thermal midpoint transition temperature, Tm, and the Van't Hoff entropy for unfolding, Δ Svh, which is a measure of unfolding cooperativity. The kinetics of degradation at 45 °C, leading to aggregation, were measured as rates of monomer and activity loss. These two rates were found to be coincident at all pH. Aggregation accelerated at pH 4 due to the early unfolding of the serine protease N-terminal domain (SP-N), whereas at pH 5-8, the fraction unfolded at 45 °C ( f45) was <1%, resulting in a baseline rate of aggregation from the native ensemble. We used a Design of Experiments (DoE) approach to evaluate how formulation excipients impact and control the thermal unfolding profile for tPA and found that the relative stability of each of the tPA domains was dependent on the formulation. Therefore, the optimization of formulations for complex multidomain proteins such as tPA may need to be multiobjective, with careful selection of the desired attributes that improve stability. As aggregation rates (ln v) correlated well to Tm ( R2 = 0.77) and Δ Svh ( R2 = 0.71) but not Tagg ( R2 = 0.01), we analyzed how formulation excipients and pH would be able to optimize Tm and Δ Svh. Formulation excipient behaviors were found to group according to their combined impact on Tm and Δ Svh. The effects of each excipient were often selectively stabilizing or destabilizing to specific tPA domains and changed the stability of particular domains relative to the others. The types of mechanism by which this could occur might involve specific interactions with the protein surface, or otherwise effects that are mediated via the solvent as a result of the different surface hydrophobicities and polarities of each domain.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Ativador de Plasminogênio Tecidual/química , Animais , Células CHO , Varredura Diferencial de Calorimetria , Cricetulus , Concentração de Íons de Hidrogênio , Cinética , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Temperatura
7.
Anal Bioanal Chem ; 411(13): 2755-2758, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30972470

RESUMO

Erythropoietin (EPO) is a glycoprotein hormone which promotes red cell replenishment and is also a global biotherapeutic medicine widely used to treat anaemia resulting, for example, from chemotherapy. Requirements of the European Pharmacopoeia stipulate that the level of dimer must be quantified in clinical EPO products (with a limit of 2%). Quantification is hampered by the lack of reference preparations containing stable measurable levels of EPO dimer, but the reproducible generation of a stable dimerised EPO preparation is challenging. We describe here the development of a lyophilised, chemically cross-linked EPO preparation, which has good stability and may be used for calibration and system suitability assurance for the size exclusion chromatographic separation of EPO preparations. Graphical abstract.


Assuntos
Reagentes de Ligações Cruzadas/química , Eritropoetina/química , Glutaral/química , Calibragem , Cromatografia em Gel/métodos , Cromatografia em Gel/normas , Eritropoetina/análise , Eritropoetina/uso terapêutico , Liofilização , Humanos , Multimerização Proteica , Estabilidade Proteica , Controle de Qualidade , Padrões de Referência
8.
Anal Biochem ; 560: 50-55, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29742446

RESUMO

Measurement of serum concentrations of Müllerian inhibiting substance (MIS), also known as anti-Müllerian Hormone (AMH) by immunoassay is gaining clinical acceptance and widespread use for the diagnosis of ovarian conditions and for prediction of the response to ovarian stimulation protocols as part of assisted reproductive therapies. Provision of an International Standard to harmonize immunoassay methods is required. It is desirable for the content of a future International Standard to be assigned in mass units for consistency with the units reported by current methods. Isotope dilution mass spectrometry (IDMS), a physicochemical method with traceability to the SI (Système International d'Unités) unit of mass, is a candidate approach to provide orthogonal data to support this mass assignment. Here, we report on the development of an IDMS method for quantitation of AMH using three peptides from different regions of the AMH monomer as surrogates for the measurement of AMH. We show the sensitivity and linearity of the standard peptides and demonstrate the reproducibility and consistency of the measurement amongst the three peptides for determining the AMH content in buffered preparations and in trial preparations of recombinant AMH, lyophilised in the presence of an excess of bovine casein.


Assuntos
Hormônio Antimülleriano/análise , Hormônio Antimülleriano/química , Espectrometria de Massas/métodos , Caseínas/química , Humanos , Técnicas de Diluição do Indicador , Isótopos/química
9.
Mol Pharm ; 15(1): 256-267, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29141152

RESUMO

Protein engineering and formulation optimization strategies can be taken to minimize protein aggregation in the biopharmaceutical industry. Short-term stability measures such as the midpoint transition temperature (Tm) for global unfolding provide convenient surrogates for longer-term (e.g., 2-year) degradation kinetics, with which to optimize formulations on practical time-scales. While successful in some cases, their limitations have not been fully evaluated or understood. Tm values are known to correlate with chemical degradation kinetics for wild-type granulocyte colony stimulating factor (GCSF) at pH 4-5.5. However, we found previously that the Tm of an antibody Fab fragment only correlated with its rate of monomer loss at temperatures close to the Tm. Here we evaluated Tm, the fraction of unfolded protein (fT) at temperature T, and two additional short-term stability measures, for their ability to predict the kinetics of monomer and bioactivity loss of wild-type GCSF and four variants, at 37 °C, and in a wide range of formulations. The GCSF variants introduced one to three mutations, giving a range of conformational stabilities spanning 7.8 kcal mol-1. We determined the extent to which the formulation rank order differs across the variants when evaluated by each of the four short-term stability measures. All correlations decreased as the difference in average Tm between each pair of GCSF variants increased. The rank order of formulations determined by Tm was the best preserved, with R2-values >0.7. Tm-values also provided a good predictor (R2 = 0.73) of the aggregation rates, extending previous findings to include GCSF variant-formulation combinations. Further analysis revealed that GCSF aggregation rates at 37 °C were dependent on the fraction unfolded at 37 °C (fT37), but transitioned smoothly to a constant baseline rate of aggregation at fT37 < 10-3. A similar function was observed previously for A33 Fab formulated by pH, ionic strength, and temperature, without excipients. For GCSF, all combinations of variants and formulations fit onto a single curve, suggesting that even single mutations destabilized by up to 4.8 kcal mol-1, are insufficient to change significantly the baseline rate of aggregation under native conditions. The baseline rate of aggregation for GCSF under native conditions was 66-fold higher than that for A33 Fab, highlighting that they are a specific feature of each native protein structure, likely to be dependent on local surface properties and dynamics.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Proteínas/química , Cinética , Concentração Osmolar , Temperatura
10.
Reprod Biomed Online ; 37(5): 631-640, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30241771

RESUMO

RESEARCH QUESTION: Is formulated and lyophilized, recombinant human Müllerian inhibiting substance, also known as anti-Müllerian hormone (AMH), suitable for the preparation of a WHO international standard to calibrate AMH immunoassays? DESIGN: The AMH content of a trial preparation, coded SS-581, was determined by five laboratories using seven immunoassay methods. Participants were requested to report the content of the preparation in terms of their method calibrators through the measurement of a minimum of five concentrations in the linear part of the dose-response curve. Participants were also asked to measure, concomitantly, a panel of six serum samples containing AMH at concentrations of 0.1-13.0 ng/ml. RESULTS: Across all assays, including two automated assays in development, the geometric mean content was 361.76 ng/ampoule with a geometric coefficient of variation (GCV%) of 39.95%. When measured by immunoassays that were commercially available at the time of the study, the mean content was 423.08 ng/ampoule, with a GCV% of 26.67%. The inter-method geometric means of five serum samples with an AMH concentration >0.3 ng/ml and measured concomitantly with dilutions of SS-581 varied with a range of GCV% of 14.90-22.35%, which may reflect the use of serum sample value transfer to calibrate current immunoassays, some of which use non-human AMH calibrators. The AMH in trial preparation SS-581 was shown to be biologically active in the Müllerian duct regression assay. CONCLUSIONS: A reference material prepared using human recombinant AMH is a promising candidate for the preparation of an international standard for AMH for immunoassays calibrated to recombinant human AMH.


Assuntos
Hormônio Antimülleriano/sangue , Imunoensaio/normas , Calibragem , Feminino , Humanos
11.
Biologicals ; 43(2): 110-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614372

RESUMO

Lyophilized Influenza antigen reference reagents are a critical resource in the quality control of influenza vaccines. A standard formulation has been used successfully at NIBSC for many years however, following the unexpected occurrence of a collapsed appearance in a particular batch a study was carried out to establish the impact of the sugar concentration in the formulation using modulated differential scanning calorimetry (mDSC) and nuclear magnetic resonance spectroscopy (NMR). There was a correlation between the presence and size of the mDSC eutectic temperature events and the freeze dried appearance of the cakes, which became progressively worse with increasing amounts of sugar. NMR spectroscopy could be used to positively identify and quantify the sugars in the formulations. MDSC can rapidly predict if the freeze dried appearance will be acceptable so as to assure the successful lyophilization of influenza reference preparations.


Assuntos
Antígenos Virais/química , Vacinas contra Influenza , Liofilização/métodos , Liofilização/normas , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/normas , Padrões de Referência
12.
AAPS J ; 26(3): 40, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570383

RESUMO

In a lyophilized protein/disaccharide system, the ability of the disaccharide to form a homogeneous mixture with the protein and to slow the protein mobility dictates the stabilization potential of the formulation. Human serum albumin was lyophilized with sucrose or trehalose in histidine, phosphate, or citrate buffer. 1H T1 relaxation times were measured by solid-state NMR spectroscopy and were used to assess the homogeneity and mobility of the samples after zero, six, and twelve months at different temperatures. The mobility of the samples decreased after 6 and 12 months storage at elevated temperatures, consistent with structural relaxation of the amorphous disaccharide matrix. Formulations with sucrose had lower mobility and greater stability than formulations with trehalose.


Assuntos
Sacarose , Trealose , Humanos , Trealose/química , Temperatura , Albumina Sérica Humana , Estabilidade de Medicamentos , Dissacarídeos , Espectroscopia de Ressonância Magnética , Liofilização
13.
Virus Res ; 346: 199409, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815869

RESUMO

Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is spread by infected ticks or direct contact with blood, tissues and fluids from infected patients or livestock. Infection with CCHFV causes severe haemorrhagic fever in humans which is fatal in up to 83 % of cases. CCHFV is listed as a priority pathogen by the World Health Organization (WHO) and there are currently no widely-approved vaccines. Defining a serological correlate of protection against CCHFV infection would support the development of vaccines by providing a 'target threshold' for pre-clinical and clinical immunogenicity studies to achieve in subjects and potentially obviate the need for in vivo protection studies. We therefore sought to establish titratable protection against CCHFV using pooled human convalescent plasma, in a mouse model. Convalescent plasma collected from seven individuals with a known previous CCHFV virus infection were characterised using binding antibody and neutralisation assays. All plasma recognised nucleoprotein and the Gc glycoprotein, but some had a lower Gn glycoprotein response by ELISA. Pooled plasma and two individual donations from convalescent donors were administered intraperitoneally to A129 mice 24 h prior to intradermal challenge with CCHFV (strain IbAr10200). A partial protective effect was observed with all three convalescent plasmas characterised by longer survival post-challenge and reduced clinical score. These protective responses were titratable. Further characterisation of the serological reactivities within these samples will establish their value as reference materials to support assay harmonisation and accelerate vaccine development for CCHFV.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Testes de Neutralização , Plasma/imunologia , Masculino
14.
Blood ; 116(22): e111-7, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20720184

RESUMO

Serial quantitation of BCR-ABL mRNA levels is an important indicator of therapeutic response for patients with chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, but there is substantial variation in the real-time quantitative polymerase chain reaction methodologies used by different testing laboratories. To help improve the comparability of results between centers we sought to develop accredited reference reagents that are directly linked to the BCR-ABL international scale. After assessment of candidate cell lines, a reference material panel comprising 4 different dilution levels of freeze-dried preparations of K562 cells diluted in HL60 cells was prepared. After performance evaluation, the materials were assigned fixed percent BCR-ABL/control gene values according to the International Scale. A recommendation that the 4 materials be established as the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL translocation by real-time quantitative polymerase chain reaction was approved by the Expert Committee on Biological Standardization of the World Health Organization in November 2009. We consider that the development of these reagents is a significant milestone in the standardization of this clinically important test, but because they are a limited resource we suggest that their availability is restricted to manufacturers of secondary reference materials.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Linhagem Celular , Humanos , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Organização Mundial da Saúde
15.
Biotechnol Lett ; 34(4): 641-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22187075

RESUMO

The lyophilization of proteins in microplates, to assess and optimise formulations rapidly, has been applied for the first time to a therapeutic protein and, in particular, one that requires a cell-based biological assay, in order to demonstrate the broader usefulness of the approach. Factorial design of experiment methods were combined with lyophilization in microplates to identify optimum formulations that stabilised granulocyte colony-stimulating factor during freeze drying. An initial screen rapidly identified key excipients and potential interactions, which was then followed by a central composite face designed optimisation experiment. Human serum albumin and Tween 20 had significant effects on maintaining protein stability. As previously, the optimum formulation was then freeze-dried in stoppered vials to verify that the microscale data is relevant to pilot scales. However, to validate the approach further, the selected formulation was also assessed for solid-state shelf-life through the use of accelerated stability studies. This approach allows for a high-throughput assessment of excipient options early on in product development, while also reducing costs in terms of time and quantity of materials required.


Assuntos
Liofilização/métodos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fatores Imunológicos/farmacologia , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos
16.
Front Mol Biosci ; 9: 868460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860358

RESUMO

Formulation is critical to successful delivery of lyophilized biologics. We have compared the impact of buffer choice and the addition of sodium chloride (a formulant often viewed as unfavorable for freeze-drying applications) on the outcome of trial lyophilization of an interleukin-6 reference material. While phosphate buffer was a preferred choice and yielded well-formed cakes associated with fair recovery of biological activity, the resultant residual moisture content was high (2-4% w/w). By inclusion of isotonic levels of NaCl, the freeze-dried appearance and process were not impaired, but the residual moisture delivered was considerably reduced to levels <1% w/w. We postulate that this is due to the presence of a more open-cake structure and support this with evidence from thermal analysis and scanning electron microscopy. This work illustrates the importance of wide ranging empirical investigation of formulation options in order to optimize freeze-drying outcomes for biologics.

17.
Methods Mol Biol ; 2180: 99-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797409

RESUMO

Freeze-drying is a complex process despite the relatively small number of steps involved, since the freezing, sublimation, desorption, and reconstitution processes all play a part in determining the success or otherwise of the final product qualities, and each stage can impose different stresses on a product. This is particularly the case with many fragile biological samples, which require great care in the selection of formulation additives such as protective agents and other stabilizers. Despite this, the process is widely used, not least because once any such processing stresses can be overcome, the result is typically a significantly more stable product than was the case with the starting material. Indeed, lyophilization may be considered a gentler method than conventional air-drying methods, which tend to apply heat to the product rather than starting by removing heat as is the case here. Additionally, due to the high surface area to volume ratio, freeze-dried materials tend to be drier than their conventionally dried counterparts and also rehydrate more rapidly. This chapter provides an overview of freeze-drying (lyophilization) of biological specimens with particular reference to the importance of formulation development, characterization, and cycle development factors necessary for the commercial exploitation of freeze-dried products, and reviews the recent developments in analytical methods which have come to underpin modern freeze-drying practice.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Estabilidade de Medicamentos , Liofilização/métodos , Tecnologia Farmacêutica/métodos , Animais , Humanos
18.
Pharmaceutics ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834363

RESUMO

When preparing biological reference materials, the stability of the lyophilized product is critical for long-term storage, particularly in order to meet WHO International Standards, which are not assigned expiry dates but are expected to be in use for several decades. Glass ampoules are typically used by the National Institute for Biological Standards and Control (NIBSC) for the lyophilization of biological materials. More recently, a clear need has arisen for the filling of smaller volumes, for which ampoules may not be optimal. We investigated the use of plastic microtubes as an alternative container for small volume fills. In this study, a recombinant diphtheria antitoxin monoclonal antibody (DATMAB) was used as a model molecule to investigate the suitability of plastic microtubes for filling small volumes. The stability and quality of the dried material was assessed after an accelerated degradation study using a toxin neutralization test and size exclusion HPLC. While microtubes have shown some promise in the past for use in the lyophilization of some biological materials, issues with stability may arise when more labile materials are freeze-dried. We demonstrate here that the microtube format is unsuitable for ensuring the stability of this monoclonal antibody.

19.
Front Cell Infect Microbiol ; 11: 717689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869052

RESUMO

Generation of sequence defined antibodies from universal libraries by phage display has been established over the past three decades as a robust method to cope with the increasing market demand in therapy, diagnostics and research. For applications requiring the bivalent antigen binding and an Fc part for detection, phage display generated single chain Fv (scFv) antibody fragments can rapidly be genetically fused to the Fc moiety of an IgG for the production in eukaryotic cells of antibodies with IgG-like properties. In contrast to conversion of scFv into IgG format, the conversion to scFv-Fc requires only a single cloning step, and provides significantly higher yields in transient cell culture production than IgG. ScFv-Fcs can be effective as neutralizing antibodies in vivo against a panel of pathogens and toxins. However, different scFv fragments are more heterologous in respect of stability than Fab fragments. While some scFv fragments can be made extremely stable, this may change due to few mutations, and is not predictable from the sequence of a newly selected antibody. To mitigate the necessity to assess the stability for every scFv-Fc antibody, we developed a generic lyophilization protocol to improve their shelf life. We compared long-term stability and binding activity of phage display-derived antibodies in the scFv-Fc and IgG format, either stored in liquid or lyophilized state. Conversion of scFv-Fcs into the full IgG format reduced protein degradation and aggregation, but in some cases compromised binding activity. Comparably to IgG conversion, lyophilization of scFv-Fc resulted in the preservation of the antibodies' initial properties after storage, without any drop in affinity for any of the tested antibody clones.


Assuntos
Anticorpos de Cadeia Única , Anticorpos Neutralizantes , Técnicas de Visualização da Superfície Celular , Liofilização , Expectativa de Vida , Anticorpos de Cadeia Única/genética
20.
Cryobiology ; 61(1): 27-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20430020

RESUMO

Dynamic mechanical analysis is widely used to determine glass transitions in solid state materials. However, here we demonstrate the application of DMA for the determination of glass transitions (Tg') in the frozen liquid state by means of a steel sample pocket. The use of the pocket allows frozen material to be analysed and glass transition events demonstrated. In addition, it allows weak glass transitions to be detected clearly in some complex formulations where they can be obscured by eutectic and other strong thermal events when other methods such as DSC or DTA are used. Classical excipients (trehalose, lactose, dextran) were analysed and shown to give reproducible Tg' values, though with values slightly higher than those obtained by DSC. Finally, several complex real biological materials, typical of those encountered when freeze drying biological and biopharmaceutical materials, were analysed and the potential value of DMA demonstrated to determine the relevant glass transition temperatures for use in cryobiology and freeze drying.


Assuntos
Antígenos Virais/química , Excipientes/química , Heparina/química , Plasma/química , Albumina Sérica/química , Temperatura de Transição , Animais , Liofilização/métodos , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA