Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2314261121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513094

RESUMO

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.


Assuntos
Arsênio , Poluentes do Solo , Oligoelementos , Arsênio/metabolismo , Oligoelementos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878725

RESUMO

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Assuntos
Anti-Infecciosos , Arabidopsis , Microbiota , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Plantas/metabolismo , Rizosfera , Benzoxazinas/farmacologia , Benzoxazinas/metabolismo , Arabidopsis/metabolismo , Anti-Infecciosos/metabolismo , Microbiologia do Solo
3.
Ecol Lett ; 25(6): 1387-1400, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384215

RESUMO

Climate change may affect plant-herbivore interactions and their associated ecosystem functions. In an experimental evolution approach, we subjected replicated populations of the invasive Ambrosia artemisiifolia to a combination of simulated warming and herbivory by a potential biocontrol beetle. We tracked genomic and metabolomic changes across generations in field populations and assessed plant offspring phenotypes in a common environment. Using an integrated Bayesian model, we show that increased offspring biomass in response to warming arose through changes in the genetic composition of populations. In contrast, increased resistance to herbivory arose through a shift in plant metabolomic profiles without genetic changes, most likely by transgenerational induction of defences. Importantly, while increased resistance was costly at ambient temperatures, warming removed this constraint and favoured both vigorous and better defended plants under biocontrol. Climate warming may thus decrease biocontrol efficiency and promote Ambrosia invasion, with potentially serious economic and health consequences.


Assuntos
Ambrosia , Ecossistema , Teorema de Bayes , Mudança Climática , Herbivoria/fisiologia , Plantas
4.
Chimia (Aarau) ; 76(11): 928-938, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069788

RESUMO

Benzoxazinoids are specialized metabolites that modulate plant physiology and plant interactions with their environment. In this review, we synthesize their multiple functions and ecological relevance. We first provide an overview of benzoxazinoid biosynthesis and highlight known regulatory elements involved in modulating their production. We then outline the role of benzoxazinoids in plant nutrition, vegetative and reproductive growth, and defense. We further summarize benzoxazinoid response to environmental factors such as temperature, drought, CO2, light, or nutrient levels and emphasize their potential role in tolerating abiotic stresses. Finally, we argue that benzoxazinoids act as a strong selective force on different trophic levels by shaping the plant interactions with microbes, insect herbivores, and competitor plants. Understanding the pivotal role of benzoxazinoids in plant biology is crucial to apprehend their impact on (agro)ecosystem functioning and diversity.

5.
Plant Cell Environ ; 44(8): 2672-2686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748996

RESUMO

Plant leaves that are exposed to herbivore-induced plant volatiles (HIPVs) respond by increasing their defenses, a phenomenon referred to as priming. Whether this phenomenon also occurs in the roots is unknown. Using maize plants, Zea mays, whose leaves respond strongly to leaf HIPVs, we measured the impact of belowground HIPVs, emanating from roots infested by the banded cucumber beetle, Diabrotica balteata, on constitutive and herbivore-induced levels of defense-related gene expression, phytohormones, volatile and non-volatile primary and secondary metabolites, growth and herbivore resistance in roots of neighbouring plants. HIPV exposure did not increase constitutive or induced levels of any of the measured root traits. Furthermore, HIPV exposure did not reduce the performance or survival of D. balteata on maize or its ancestor teosinte. Cross-exposure experiments between HIPVs from roots and leaves revealed that maize roots, in contrast to maize leaves, neither emit nor respond strongly to defense-regulating HIPVs. Together, these results demonstrate that volatile-mediated defense regulation is restricted to the leaves of maize. This finding is in line with the lower diffusibility of volatiles in the soil and the availability of other, potentially more efficient, information conduits below ground.


Assuntos
Herbivoria , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Zea mays/fisiologia , Animais , Besouros/fisiologia
6.
J Chem Ecol ; 47(10-11): 889-906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415498

RESUMO

How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.


Assuntos
Mudança Climática , Besouros/fisiologia , Cadeia Alimentar , Strongyloidea/fisiologia , Zea mays/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Zea mays/crescimento & desenvolvimento
7.
Plant Cell Environ ; 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33073385

RESUMO

The above article was published in error by the publisher before a final editorial decision had been reached. It has therefore been removed temporarily while the editorial process concludes. The publisher apologizes for the inconvenience.

8.
J Org Chem ; 82(23): 12318-12327, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29056051

RESUMO

A simple procedure for the conversion of tertiary lactams to 2-monoalkylated cyclic amines is described. The reaction sequence involves conversion of a lactam to a thioiminium ion followed by reaction with an organocopper (RCu) reagent and final reduction with triacetoxyborohydride. The reaction is high yielding and shows an excellent functional group tolerance. Its utility is demonstrated by a rapid synthesis of indolizidine 167B. The excellent chemoselectivity of the process, where only monoalkylation products are formed, is rationalized by a mechanism involving the formation of a transient enamine.

9.
J Agric Food Chem ; 72(7): 3427-3435, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38336361

RESUMO

Benzoxazinoids (BXDs) are plant specialized metabolites exerting a pivotal role in plant nutrition, allelopathy, and defenses. Multihexose benzoxazinoids were previously observed in cereal-based food products such as whole-grain bread. However, their production in plants and exact structure have not been fully elucidated. In this study, we showed that drought induced the production of di-, tri-, and even tetrahexose BXDs in maize roots and leaves. We performed an extensive nuclear magnetic resonance study and elucidated the nature and linkage of the sugar units, which were identified as gentiobiose units ß-linked (1″ → 6') for the dihexoses and (1″ → 6')/(1‴ → 6″) for the trihexoses. Drought induced the production of DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, and HDMBOA-2Glc. The induction was common among several maize lines and the strongest in seven-day-old seedlings. This work provides ground to further characterize the BXD synthetic pathway, its relevance in maize-environment interactions, and its impact on human health.


Assuntos
Benzoxazinas , Zea mays , Humanos , Benzoxazinas/metabolismo , Zea mays/química , Secas , Plântula/metabolismo , Grão Comestível/metabolismo
10.
Nat Commun ; 15(1): 6535, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095376

RESUMO

Root exudates contain specialised metabolites that shape the plant's root microbiome. How host-specific microbes cope with these bioactive compounds, and how this ability affects root microbiomes, remains largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound in the maize rhizosphere MBOA (6-methoxybenzoxazolin-2(3H)-one) and formed AMPO (2-amino-7-methoxy-phenoxazin-3-one). AMPO forming bacteria were enriched in the rhizosphere of benzoxazinoid-producing maize and could use MBOA as carbon source. We identified a gene cluster associated with AMPO formation in microbacteria. The first gene in this cluster, bxdA encodes a lactonase that converts MBOA to AMPO in vitro. A deletion mutant of the homologous bxdA genes in the genus Sphingobium, did not form AMPO nor was it able to use MBOA as a carbon source. BxdA was identified in different genera of maize root bacteria. Here we show that plant-specialised metabolites select for metabolisation-competent root bacteria. BxdA represents a benzoxazinoid metabolisation gene whose carriers successfully colonize the maize rhizosphere and thereby shape the plant's chemical environmental footprint.


Assuntos
Benzoxazinas , Raízes de Plantas , Rizosfera , Zea mays , Zea mays/microbiologia , Benzoxazinas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Família Multigênica , Microbiota/genética , Microbiologia do Solo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Sphingomonadaceae/enzimologia
11.
J Agric Food Chem ; 71(5): 2370-2376, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36692976

RESUMO

While plant-specialized metabolites can affect mammal health, their fate during the aerobic deterioration of crop silage remains poorly understood. In this study, we investigated the metabolization of benzoxazinoids (BXs) in silages of two maize genotypes (W22 wild type and bx1 mutant line) during aerobic deterioration. In W22 plants, concentrations of the aglucone BXs DIMBOA and HMBOA in silage decreased over time upon air exposure, while concentrations of MBOA and BOA increased. Mutant plants had low levels of BXs, which did not significantly vary over time. Aerobic stability was BX-dependent, as pH and counts of yeasts and molds were higher in W22 compared to that in bx1 silage. The nutrient composition was not affected by BXs. These preliminary results may be used to estimate the amounts of BXs provided to farm animals via silage feeding. However, further research is warranted under different harvest and storage conditions.


Assuntos
Silagem , Zea mays , Animais , Zea mays/química , Silagem/análise , Benzoxazinas/metabolismo , Fungos/metabolismo , Leveduras/metabolismo , Fermentação , Aerobiose , Mamíferos/metabolismo
12.
Elife ; 62017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29171835

RESUMO

Highly adapted herbivores can phenocopy two-component systems by stabilizing, sequestering and reactivating plant toxins. However, whether these traits protect herbivores against their enemies is poorly understood. We demonstrate that the western corn rootworm Diabrotica virgifera virgifera, the most damaging maize pest on the planet, specifically accumulates the root-derived benzoxazinoid glucosides HDMBOA-Glc and MBOA-Glc. MBOA-Glc is produced by D. virgifera through stabilization of the benzoxazinoid breakdown product MBOA by N-glycosylation. The larvae can hydrolyze HDMBOA-Glc, but not MBOA-Glc, to produce toxic MBOA upon predator attack. Accumulation of benzoxazinoids renders D. virgifera highly resistant to nematodes which inject and feed on entomopathogenic symbiotic bacteria. While HDMBOA-Glc and MBOA reduce the growth and infectivity of both the nematodes and the bacteria, MBOA-Glc repels infective juvenile nematodes. Our results illustrate how herbivores combine stabilized and reactivated plant toxins to defend themselves against a deadly symbiosis between the third and the fourth trophic level enemies.


Assuntos
Antibiose , Benzoxazinas/metabolismo , Besouros/fisiologia , Glucosídeos/metabolismo , Herbivoria/fisiologia , Toxinas Biológicas/metabolismo , Animais , Zea mays/parasitologia
13.
Org Lett ; 18(19): 4814-4817, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27618124

RESUMO

A silver-catalyzed cycloisomerization reaction of a series of o-alkynylbenzohydroxamic acids is reported. Several 5-exo-dig and 6-endo-dig modes of cyclization were observed with the nitrogen or oxygen atoms of the amide group acting as nucleophiles. The selectivity was strongly dependent on the silver salt used and on the presence of triphenylphosphine as an additive. Indeed, while the use of Ag2O at room temperature allowed the isolation of isobenzofuran-1-one oximes (7 compounds, 48-92% yield), [Ag(Im)]n with the concomitant addition of 2 equiv of PPh3 led to a switch in selectivity and to a family of isoindolin-1-ones (10 compounds, 59-87%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA