Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 30(19): 6743-50, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20463236

RESUMO

The accumulation of amyloid beta (Abeta) in Alzheimer's disease is caused by an imbalance of production and clearance, which leads to increased soluble Abeta species and extracellular plaque formation in the brain. Multiple Abeta-lowering therapies are currently in development: an important goal is to characterize the molecular mechanisms of action and effects on physiological processing of Abeta, as well as other amyloid precursor protein (APP) metabolites, in models which approximate human Abeta physiology. To this end, we report the translation of the human in vivo stable-isotope-labeling kinetics (SILK) method to a rhesus monkey cisterna magna ported (CMP) nonhuman primate model, and use the model to test the mechanisms of action of a gamma-secretase inhibitor (GSI). A major concern of inhibiting the enzymes which produce Abeta (beta- and gamma-secretase) is that precursors of Abeta may accumulate and cause a rapid increase in Abeta production when enzyme inhibition discontinues. In this study, the GSI MK-0752 was administered to conscious CMP rhesus monkeys in conjunction with in vivo stable-isotope-labeling, and dose-dependently reduced newly generated CNS Abeta. In contrast to systemic Abeta metabolism, CNS Abeta production was not increased after the GSI was cleared. These results indicate that most of the CNS APP was metabolized to products other than Abeta, including C-terminal truncated forms of Abeta: 1-14, 1-15 and 1-16; this demonstrates an alternative degradation pathway for CNS amyloid precursor protein during gamma-secretase inhibition.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Medula Espinal/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/sangue , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Animais , Encéfalo/enzimologia , Radioisótopos de Carbono , Estudos Cross-Over , Humanos , Marcação por Isótopo/métodos , Cinética , Macaca mulatta , Masculino , Modelos Animais , Especificidade da Espécie , Medula Espinal/enzimologia , Fatores de Tempo
2.
Bone ; 56(2): 489-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23806798

RESUMO

Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 µg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates.


Assuntos
Alendronato/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Alendronato/farmacocinética , Animais , Compostos de Bifenilo/farmacocinética , Conservadores da Densidade Óssea/farmacocinética , Conservadores da Densidade Óssea/uso terapêutico , Remodelação Óssea/efeitos dos fármacos , Feminino , Haplorrinos , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/efeitos dos fármacos , Ovariectomia , Radiografia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos
3.
Bone ; 56(2): 497-505, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23791777

RESUMO

Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 µg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs.


Assuntos
Alendronato/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Análise de Elementos Finitos , Animais , Macaca mulatta , Ovariectomia , Rádio (Anatomia) , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA