Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 619(7969): 317-322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438590

RESUMO

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.


Assuntos
Lagos , Plásticos , Poluição da Água , Abastecimento de Água , Ecossistema , Lagos/química , Plásticos/análise , Plásticos/classificação , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos , Inquéritos e Questionários , Urbanização , Atividades Humanas
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607952

RESUMO

Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700-60+50 and 850-60+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likely inhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands.


Assuntos
Ecossistema , Meio Ambiente , Atividades Humanas , Migração Humana , Agricultura , Açores , Mudança Climática , Modelos Climáticos , Fezes/química , Humanos
3.
Glob Chang Biol ; 28(4): 1402-1413, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773676

RESUMO

A variety of organisms can colonize microplastic surfaces through biofouling processes. Heterotrophic bacteria tend to be the focus of plastisphere research; however, the presence of epiplastic microalgae within the biofilm has been repeatedly documented. Despite the relevance of biofouling in determining the fate and effects of microplastics in aquatic systems, data about this process are still scarce, especially for freshwater ecosystems. Here, our goal was to evaluate the biomass development and species composition of biofilms on different plastic polymers and to investigate whether plastic substrates exert a strong enough selection to drive species sorting, overcoming other niche-defining factors. We added microplastic pellets of high-density polyethylene (HDPE), polyethylene terephthalate (PET), and a mix of the two polymers in 15 lentic mesocosms in five different locations of the Iberian Peninsula, and after one month, we evaluated species composition and biomass of microalgae developed on plastic surfaces. Our results, based on 45 samples, showed that colonization of plastic surfaces occurred in a range of lentic ecosystems covering a wide geographical gradient and different environmental conditions (e.g., nutrient concentration, conductivity, macrophyte coverage). We highlighted that total biomass differed based on the polymer considered, with higher biomass developed on PET substrate compared to HDPE. Microplastics supported the growth of a rich and diversified community of microalgae (242 species), with some cosmopolite species. However, we did not observe species-specificity in the colonization of the different plastic polymers. Local species pool and nutrient concentration rather than polymeric composition seemed to be the determinant factor defying the community diversity. Regardless of specific environmental conditions, we showed that many species could coexist on the surface of relatively small plastic items, highlighting how microplastics may have considerable carrying capacity, with possible consequences on the wider ecological context.


Assuntos
Microalgas , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Polímeros/química , Poluentes Químicos da Água/análise
5.
Commun Biol ; 7(1): 653, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806643

RESUMO

Metabolic rate, the rate of energy use, underpins key ecological traits of organisms, from development and locomotion to interaction rates between individuals. In a warming world, the temperature-dependence of metabolic rate is anticipated to shift predator-prey dynamics. Yet, there is little real-world evidence on the effects of warming on trophic interactions. We measured the respiration rates of aquatic larvae of three insect species from populations experiencing a natural temperature gradient in a large-scale mesocosm experiment. Using a mechanistic model we predicted the effects of warming on these taxa's predator-prey interaction rates. We found that species-specific differences in metabolic plasticity lead to mismatches in the temperature-dependence of their relative velocities, resulting in altered predator-prey interaction rates. This study underscores the role of metabolic plasticity at the species level in modifying trophic interactions and proposes a mechanistic modelling approach that allows an efficient, high-throughput estimation of climate change threats across species pairs.


Assuntos
Mudança Climática , Cadeia Alimentar , Comportamento Predatório , Animais , Larva/fisiologia , Temperatura , Especificidade da Espécie , Insetos/fisiologia
6.
Ecology ; 91(7): 1908-15, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20715609

RESUMO

Despite a long history of work on relationships between area and number of species, the details of mechanisms causing patterns have eluded ecologists. The general principle that the number of species increases with the area sampled is often attributed to a sampling artifact due to larger areas containing greater numbers of individuals. We manipulated the patch size and surface area of experimental mimics of macro-algae to test several models that can explain the relationship between abundance and species richness of assemblages colonizing different habitats. Our results show that patch size and structural complexity have independent effects on assemblages of macroinvertebrates. Regardless of their structural complexity, larger habitats were colonized by more species. Patch size did not have a significant effect on numbers of individuals, so the increased number of species in larger habitats was not simply a result of random placement associated with sampling increased number of individuals. Similarly, random placement alone could not explain differences in numbers of species among habitats with different structural complexity, contrary to suggestions that the relationship between number of species and surface area might also be a sampling artifact due to more complex habitats having larger areas and therefore sampling more individuals. Future progress would benefit from manipulating properties of habitat in conjunction with experimental manipulations of area.


Assuntos
Ecossistema , Invertebrados/classificação , Invertebrados/fisiologia , Animais , Eucariotos , Oceanos e Mares , Densidade Demográfica
7.
PLoS One ; 13(7): e0200556, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29985956

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0197877.].

8.
PLoS One ; 13(5): e0197877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29791491

RESUMO

Understanding what determines species' geographic distributions is crucial for assessing global change threats to biodiversity. Measuring limits on distributions is usually, and necessarily, done with data at large geographic extents and coarse spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. 'community structure') reflects assembly processes occurring at small scales, and are often available for relatively extensive areas, so could be useful for explaining species distributions. We demonstrate that Bayesian Network Inference (BNI) can overcome several challenges to including community structure into studies of species distributions, despite having been little used to date. We hypothesized that the relative abundance of coexisting species can improve predictions of species distributions. In 1570 assemblages of 68 Mediterranean woody plant species we used BNI to incorporate community structure into Species Distribution Models (SDMs), alongside environmental information. Information on species associations improved SDM predictions of community structure and species distributions moderately, though for some habitat specialists the deviance explained increased by up to 15%. We demonstrate that most species associations (95%) were positive and occurred between species with ecologically similar traits. This suggests that SDM improvement could be because species co-occurrences are a proxy for local ecological processes. Our study shows that Bayesian Networks, when interpreted carefully, can be used to include local conditions into measurements of species' large-scale distributions, and this information can improve the predictions of species distributions.


Assuntos
Biodiversidade , Geografia , Plantas , Análise de Variância , Teorema de Bayes , Modelos Estatísticos , Análise Espacial , Madeira
9.
PeerJ ; 4: e1985, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168991

RESUMO

Habitat structure influences the diversity and distribution of organisms, potentially affecting their response to disturbances by either affecting their 'susceptibility' or through the provision of resources that can mitigate impacts of disturbances. Chemical disturbances due to contamination are associated with decreases in diversity and functioning of systems and are also likely to increase due to coastal urbanisation. Understanding how habitat structure interacts with contaminants is essential to predict and therefore manage such effects, minimising their consequences to marine systems. Here, we manipulated two structurally different habitats and exposed them to different types of contaminants. The effects of contamination and habitat structure interacted, affecting species richness. More complex experimental habitats were colonized by a greater diversity of organisms than the less complex habitats. These differences disappeared, however, when habitats were exposed to contaminants, suggesting that contaminants can override effects of habitats structure at small spatial scales. These results provide insight into the complex ways that habitat structure and contamination interact and the need to incorporate evidence of biotic responses from individual disturbances to multiple stressors. Such effects need to be taken into account when designing and planning management and conservation strategies to natural systems.

10.
PLoS One ; 10(11): e0142289, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26554924

RESUMO

Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.


Assuntos
Ecossistema , Alga Marinha/classificação , Água , Biomassa
11.
Trends Ecol Evol ; 30(6): 347-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25922148

RESUMO

Inferring biotic interactions from functional, phylogenetic and geographical proxies remains one great challenge in ecology. We propose a conceptual framework to infer the backbone of biotic interaction networks within regional species pools. First, interacting groups are identified to order links and remove forbidden interactions between species. Second, additional links are removed by examination of the geographical context in which species co-occur. Third, hypotheses are proposed to establish interaction probabilities between species. We illustrate the framework using published food-webs in terrestrial and marine systems. We conclude that preliminary descriptions of the web of life can be made by careful integration of data with theory.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Geografia , Modelos Biológicos , Filogenia , Plantas
12.
PLoS One ; 8(4): e61349, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593471

RESUMO

Despite edges being common features of many natural habitats, there is little general understanding of the ways assemblages respond to them. Every edge between two contrasting habitats has characteristics governed by the composition of adjoining habitats and/or by the nature of any transitions between them. To develop better explanatory theory, we examined the extent to which edges act independently of the composition of the surrounding landscape and to which transitions between different types of habitats affect assemblages. Using experimental landscapes, we measured the responses of assemblages of marine molluscs colonising different experimental landscapes constructed with different compositions (i.e. different types of habitats within the landscape) and different types of transitions between habitats (i.e. sharp vs gradual). Edge effects (i.e. proximity to the edge of the landscape) were independent of the internal composition of experimental landscape; fewer species were found near the edges of landscapes. These reductions may be explained by differences in differential larval settlement between edges and interiors of experimental landscapes. We also found that the sharpness of transitions influenced the magnitude of interactions in the different types of habitats in experimental landscapes, most probably due to the increased number of species in areas of transition between two habitats. Our experiments allowed the effects of composition and transitions between habitats to be disentangled from those of proximity to edges of landscapes. Understanding and making predictions about the responses by species to edges depends on understanding not only the nature of transitions across boundaries, but also the landscape in which the edges are embedded.


Assuntos
Ecossistema , Ambiente Controlado , Análise de Variância , Animais , Organismos Aquáticos , Moluscos
13.
Front Microbiol ; 3: 432, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316188

RESUMO

Biodiversity is thought to provide insurance for ecosystem functioning under heterogeneous environments; however, such insurance potential is under serious threat following unprecedented loss of biodiversity. One of the key mechanism underlying ecological insurance is that niche differentiation allows asynchronous responses to fluctuating environments, although the role of different ecological strategies (e.g., specialists vs. generalists) has yet to be formally evaluated. We present here a simple experimental study that illustrates how different ecological strategies (i.e., generalists vs. specialists) can shape the biodiversity-insurance relationship. We assembled microcosm of generalists and specialist bacteria over a gradient of salinity and found that, bacterial communities made up of generalists were more productive and more stable over time under environmental fluctuations. We discuss our results in context with simple theoretical predictions and propose future directions for biological insurance theory. We argue that beyond species richness itself, it is essential to incorporate the distribution of ecological strategies across relevant environmental gradients as predictors of the insurance potential of biodiversity in natural ecosystems.

14.
J Anim Ecol ; 76(5): 986-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17714277

RESUMO

1. The nature and resources supplied by different components of habitats influence species, creating variability from place to place within a habitat. 2. Experiments were done to investigate the effects of altering components of habitats on the variability of assemblages of numerous species of intertidal gastropods. 3. Artificial habitats with three levels of structure, combining different types of turf (i.e. different densities and height of fronds) were sampled 8 weeks after deployment in the intertidal. They were rapidly colonized by up to 66 species of gastropods. 4. Independently of the types of turf combined to form different habitats, there were differences in assemblages where there was more than one type of component present. Multivariate dissimilarities among units making up each habitat were also greater where there were more than one type of unit, but there was no such difference in the variance of numbers of species per unit. 5. Altering the relative abundances of different types of components made little change to the assemblages, nor their multivariate variability among units of habitat and the variance in number of species per unit in each habitat. 6. Differences in assemblages due to the different structure of habitat are complex to interpret and simple characterizations of structure of habitat are inadequate. Comparing different habitats requires appropriate experimentation to ensure that variability within habitats is also investigated.


Assuntos
Biodiversidade , Ecossistema , Abastecimento de Alimentos , Gastrópodes/fisiologia , Animais , Demografia , Meio Ambiente , Feminino , Gastrópodes/crescimento & desenvolvimento , Masculino , Análise Multivariada , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA