Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochim Biophys Acta ; 1850(11): 2318-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259819

RESUMO

BACKGROUND: SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. METHODS: Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. RESULTS: Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. CONCLUSIONS: SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. GENERAL SIGNIFICANCE: The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies.


Assuntos
Concentração de Íons de Hidrogênio , Neurociências , Regeneração/fisiologia , Animais , Cálcio/metabolismo , Fluorescência , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Radiometria , Xenopus laevis/fisiologia
2.
Biochim Biophys Acta ; 1850(9): 1905-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25964069

RESUMO

BACKGROUND: Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. METHODS: A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. RESULTS: Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. CONCLUSIONS: Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. GENERAL SIGNIFICANCE: We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution.


Assuntos
Técnicas Biossensoriais , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Animais , Hipóxia Celular , Engenharia Genética , Células HeLa , Humanos , Camundongos , Neoplasias/patologia , Esferoides Celulares
3.
Biochim Biophys Acta ; 1840(3): 951-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24286672

RESUMO

BACKGROUND: The ratio of NAD(+)/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD(+)/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD(+)/NADH are fundamentally new approach for studying the NAD(+)/NADH dynamics. METHODS: We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy. RESULTS: The sensor, named RexYFP, reports changes in the NAD(+)/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD(+)/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD(+)/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore. CONCLUSION: RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments. GENERAL SIGNIFICANCE: RexYFP has several advantages over existing NAD(+)/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.


Assuntos
Proteínas de Bactérias/genética , Corantes Fluorescentes , Proteínas Luminescentes/genética , NAD/análise , Citoplasma/química , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mitocôndrias/química , Oxirredução
4.
Neurophotonics ; 11(2): 024201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38090225

RESUMO

Significance: Efforts starting more than 20 years ago led to increasingly well performing genetically encoded voltage indicators (GEVIs) for optical imaging at wavelengths <600 nm. Although optical imaging in the >600 nm wavelength range has many advantages over shorter wavelength approaches for mesoscopic in vivo monitoring of neuronal activity in the mammalian brain, the availability and evaluation of well performing near-infrared GEVIs are still limited. Aim: Here, we characterized two recent near-infrared GEVIs, Archon1 and nirButterfly, to support interested tool users in selecting a suitable near-infrared GEVI for their specific research question requirements. Approach: We characterized side-by-side the brightness, sensitivity, and kinetics of both near-infrared GEVIs in a setting focused on population imaging. Results: We found that nirButterfly shows seven-fold higher brightness than Archon1 under the same conditions and faster kinetics than Archon1 for population imaging without cellular resolution. But Archon1 showed larger signals than nirButterfly. Conclusions: Neither GEVI characterized here surpasses in all three key parameters (brightness, kinetics, and sensitivity), so there is no unequivocal preference for one of the two. Our side-by-side characterization presented here provides new information for future in vitro and ex vivo experimental designs.

5.
Front Cell Dev Biol ; 10: 880107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846350

RESUMO

Near-infrared (NIR) genetically encoded calcium indicators (GECIs) are becoming powerful tools for neuroscience. Because of their spectral characteristics, the use of NIR GECIs helps to avoid signal loss from the absorption by body pigments, light-scattering, and autofluorescence in mammalian tissues. In addition, NIR GECIs do not suffer from cross-excitation artifacts when used with common fluorescent indicators and optogenetics actuators. Although several NIR GECIs have been developed, there is no NIR GECI currently available that would combine the high brightness in cells and photostability with small size and fast response kinetics. Here, we report a small FRET-based NIR fluorescent calcium indicator iGECInano. We characterize iGECInano in vitro, in non-neuronal mammalian cells, and primary mouse neurons. iGECInano demonstrates the improvement in the signal-to-noise ratio and response kinetics compared to other NIR GECIs.

6.
Nat Commun ; 13(1): 2813, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589810

RESUMO

Optogenetic manipulation and optical imaging in the near-infrared range allow non-invasive light-control and readout of cellular and organismal processes in deep tissues in vivo. Here, we exploit the advantages of Rhodopseudomonas palustris BphP1 bacterial phytochrome, which incorporates biliverdin chromophore and reversibly photoswitches between the ground (740-800 nm) and activated (620-680 nm) states, to generate a loxP-BphP1 transgenic mouse model. The mouse enables Cre-dependent temporal and spatial targeting of BphP1 expression in vivo. We validate the optogenetic performance of endogenous BphP1, which in the activated state binds its engineered protein partner QPAS1, to trigger gene transcription in primary cells and living mice. We demonstrate photoacoustic tomography of BphP1 expression in different organs, developing embryos, virus-infected tissues and regenerating livers, with the centimeter penetration depth. The transgenic mouse model provides opportunities for both near-infrared optogenetics and photoacoustic imaging in vivo and serves as a source of primary cells and tissues with genomically encoded BphP1.


Assuntos
Técnicas Fotoacústicas , Fitocromo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Fitocromo/genética , Fitocromo/metabolismo
7.
Nat Biotechnol ; 39(3): 368-377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33106681

RESUMO

While calcium imaging has become a mainstay of modern neuroscience, the spectral properties of current fluorescent calcium indicators limit deep-tissue imaging as well as simultaneous use with other probes. Using two monomeric near-infrared (NIR) fluorescent proteins (FPs), we engineered an NIR Förster resonance energy transfer (FRET)-based genetically encoded calcium indicator (iGECI). iGECI exhibits high levels of brightness and photostability and an increase up to 600% in the fluorescence response to calcium. In dissociated neurons, iGECI detects spontaneous neuronal activity and electrically and optogenetically induced firing. We validated the performance of iGECI up to a depth of almost 400 µm in acute brain slices using one-photon light-sheet imaging. Applying hybrid photoacoustic and fluorescence microscopy, we simultaneously monitored neuronal and hemodynamic activities in the mouse brain through an intact skull, with resolutions of ~3 µm (lateral) and ~25-50 µm (axial). Using two-photon imaging, we detected evoked and spontaneous neuronal activity in the mouse visual cortex, with fluorescence changes of up to 25%. iGECI allows biosensors and optogenetic actuators to be multiplexed without spectral crosstalk.


Assuntos
Cálcio/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Camundongos , Neurônios/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
8.
ACS Chem Neurosci ; 11(21): 3523-3531, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33063984

RESUMO

We developed genetically encoded voltage indicators using a transmembrane voltage-sensing domain and bright near-infrared fluorescent proteins derived from bacterial phytochromes. These new voltage indicators are excited by 640 nm light and emission is measured at 670 nm, allowing imaging in the near-infrared tissue transparency window. The spectral properties of our new indicators permit seamless voltage imaging with simultaneous blue-green light optogenetic actuator activation as well as simultaneous voltage-calcium imaging when paired with green calcium indicators. Iterative optimizations led to a fluorescent probe, here termed nirButterfly, which reliably reports neuronal activities including subthreshold membrane potential depolarization and hyperpolarization as well as spontaneous spiking or electrically- and optogenetically evoked action potentials. This enables largely improved all-optical causal interrogations of physiology.


Assuntos
Neurônios , Optogenética , Potenciais de Ação , Corantes Fluorescentes , Proteínas Luminescentes/genética , Proteínas
9.
Nat Commun ; 11(1): 239, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932632

RESUMO

Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve ~40 nm resolution in live cells. In living mice we detect ~105 fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670 nm to 720 nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Imagem Molecular/instrumentação , Animais , Linhagem Celular , Feminino , Fluorescência , Humanos , Microscopia Intravital , Camundongos , Imagem Molecular/métodos , Engenharia de Proteínas , Estabilidade Proteica , Espectroscopia de Luz Próxima ao Infravermelho
10.
Sci Adv ; 4(7): eaat1357, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29978045

RESUMO

Action potential shape is a major determinant of synaptic transmission, and mechanisms of spike tuning are therefore of key functional significance. We demonstrate that synaptic activity itself modulates future spikes in the same neuron via a rapid feedback pathway. Using Ca2+ imaging and targeted uncaging approaches in layer 5 neocortical pyramidal neurons, we show that the single spike-evoked Ca2+ rise occurring in one proximal bouton or first node of Ranvier drives a significant sharpening of subsequent action potentials recorded at the soma. This form of intrinsic modulation, mediated by the activation of large-conductance Ca2+/voltage-dependent K+ channels (BK channels), acts to maintain high-frequency firing and limit runaway spike broadening during repetitive firing, preventing an otherwise significant escalation of synaptic transmission. Our findings identify a novel short-term presynaptic plasticity mechanism that uses the activity history of a bouton or adjacent axonal site to dynamically tune ongoing signaling properties.


Assuntos
Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Potenciais Evocados/efeitos dos fármacos , Feminino , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar
11.
Antioxid Redox Signal ; 20(7): 1039-44, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24020354

RESUMO

Yeast D-amino acid oxidase (DAO) can serve as a genetically encoded producer of reactive oxygen species (ROS) in redox signaling studies. However, dynamics of hydrogen peroxide production and its sensitivity to externally added D-alanine (D-Ala) in cells have not been determined. Here we show that DAO, fused to a genetically encoded H2O2 indicator HyPer, can be used for controlled production of ROS in living eukaryotic cells. We found a clear heterogeneity in ROS production dynamics between individual cells. Moreover, different cell lines demonstrated distinct sensitivity to added D-Ala. Finally, by comparing signals generated by the HyPer-DAO fusion protein versus coexpressed HyPer and DAO proteins, we show that the fusion system is more sensitive to hydrogen peroxide production. Our results show the utility of the HyPer-DAO genetically encoded system for redox signaling studies and suggest that H2O2 produced by DAO in the cytoplasm acts locally in close proximity to the enzyme.


Assuntos
D-Aminoácido Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Oxirredução , Transdução de Sinais/fisiologia
12.
Nat Commun ; 5: 5222, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25330925

RESUMO

Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca(2+) uptake.


Assuntos
Peróxido de Hidrogênio/química , Proteínas Luminescentes/química , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/química , Cálcio/química , Citoplasma/química , Transporte de Elétrons , Corantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Cinética , Mitocôndrias/metabolismo , Oxirredução , Proteínas Recombinantes/química , Transdução de Sinais , Espectrofotometria , Fatores de Tempo , Proteína Vermelha Fluorescente
13.
Methods Enzymol ; 526: 45-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23791093

RESUMO

The fluorescent sensor HyPer allows monitoring of intracellular H2O2 levels with a high degree of sensitivity and specificity. Here, we provide a detailed protocol of ratiometric imaging of H2O2 produced by cells during phagocytosis, including instructions for experiments on different commercial confocal systems, namely, Leica SP2, Leica SP5, and Carl Zeiss LSM, as well as wide-field Leica 6000 microscope. The general experimental scheme is easily adaptable for imaging H2O2 production by various cell types under a variety of conditions.


Assuntos
Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/análise , Microscopia Confocal/métodos , Animais , Linhagem Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Imagem Óptica/métodos , Fagocitose , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA