Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant Dis ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537793

RESUMO

Tomato spotted wilt virus (TSWV, family Tospoviridae, genus Orthotospovirus) is a thrips-vectored pathogen that infects lettuce (Lactuca sativa) and many vegetable crops (Kuo et al. 2014, Hasegawa et al. 2022). Another thrips-borne pathogen of lettuce, impatiens necrotic spot virus (INSV, Tospoviridae, Orthotospovirus), was first reported in 2021 in Yuma, Arizona (Hasegawa et al. 2022). Symptoms of both viruses in lettuce are similar and include necrotic spotting, leaf chlorosis and plant stunting (Kuo et al. 2014). Beginning February through April of 2022, lettuce displaying symptoms of orthotospovirus infection was collected from romaine lettuce (var. longifolia) fields in three regions of Yuma County. A total of 96 plants were collected (5 from Tacna on 2/21, 5 from Wellton on 2/21, 15 from Wellton on 3/23, 30 from Tacna on 4/4, 20 from Wellton on 4/4, and 21 from Yuma Valley on 4/4). The area of the fields ranged from 10 to 18 acres, and the percent disease incidence ranged from 0.8% (Tacna on 4/4) to 2.75% (Tacna on 2/21). Thrips vector were present in all fields were symptomatic plants were observed. One leaf disk per plant (8 mm in diameter) was sampled with a cork borer and grounded individually with a micro pestle in a 1.7 ml microcentrifuge tube with 150 ul of Tri-reagent (Molecular Research Center). Total RNA was extracted from each sample using the Zymo Direct-zol-96 kit (Zymo Research). Samples were diluted with water to a ratio of 1:10 after RNA extraction. RT-qPCR was performed in 20 ul reactions with 5 ul of input RNA using the PCR Biosystems qPCRBIO Probe 1-Step Go No-ROX for the cDNA/qPCR master mix. RT-qPCR assays were carried out in multiplex reactions using primers specific for TSWV and INSV, in addition to a lettuce internal control gene (LOC111918243), along with negative controls. Primer and probe sequence details are reported in supplemental Table 1. We used a cycle threshold (ct) < 40 to indicate a positive result for both INSV and TSWV (Chen et al. 2013; Boonham et al. 2002). RT-qPCR successfully amplified INSV in 90 out of 96 samples and TSWV in 8 out of 96 samples. These 8 samples tested positive for both TSWV and INSV, showing that INSV and TSWV co-infected lettuce plants. Thus overall, ∼ 95% of symptomatic plants were infected with INSV alone, and ∼ 8% were co-infected with TSWV and INSV. Amplicons of 4 samples testing positive for TSWV were sent for Sanger sequencing (Eurofins Genomics, Louisville, KY). All were identified as TSWV. One amplicon with TSWV was sequenced for INSV and double infection was confirmed. BLAST results from the NCBI nt database show 100% (138 bp) identity to TWSV (MW519211) for the 4 TWSV amplicons and 99.22% (137 bp) identity to INSV (KX790323) for the INSV amplicon. Sanger sequence data are in the GenBank (accession: OQ685940-OQ685944). Based on RT-qPCR results, all TSWV infected plants were also infected with INSV. INSV may have been introduced to Yuma by infected plants or thrips from lettuce transplants produced in California (Hasegawa et al. 2022). TSWV could have been introduced similarly. To our knowledge, this is the first report of TSWV infecting lettuce in Yuma and the first report of INSV and TSWV co-infecting lettuce. TSWV and INSV infections have remained low since their discovery in Yuma, in part due to effective cultural and chemical management by lettuce growers (Palumbo, 2022). However, an increase in disease incidence and severity in the future could have a significant negative impact on production of romaine lettuce in the region.

2.
BMC Genomics ; 22(1): 359, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006224

RESUMO

BACKGROUND: Despite the growing interest in the female side of copulatory interactions, the roles played by differential expression and alternative splicing mechanisms of pre-RNA on tissues outside of the reproductive tract have remained largely unknown. Here we addressed these questions in the context of con- vs heterospecific matings between Drosophila mojavensis and its sister species, D. arizonae. We analyzed transcriptional responses in female heads using an integrated investigation of genome-wide patterns of gene expression, including differential expression (DE), alternative splicing (AS) and intron retention (IR). RESULTS: Our results indicated that early transcriptional responses were largely congruent between con- and heterospecific matings but are substantially perturbed over time. Conspecific matings induced functional pathways related to amino acid balance previously associated with the brain's physiology and female postmating behavior. Heterospecific matings often failed to activate regulation of some of these genes and induced expression of additional genes when compared with those of conspecifically-mated females. These mechanisms showed functional specializations with DE genes mostly linked to pathways of proteolysis and nutrient homeostasis, while AS genes were more related to photoreception and muscle assembly pathways. IR seems to play a more general role in DE regulation during the female postmating response. CONCLUSIONS: We provide evidence showing that AS genes substantially perturbed by heterospecific matings in female heads evolve at slower evolutionary rates than the genome background. However, DE genes evolve at evolutionary rates similar, or even higher, than those of male reproductive genes, which highlights their potential role in sexual selection and the evolution of reproductive barriers.


Assuntos
Copulação , Transcriptoma , Processamento Alternativo , Animais , Drosophila/genética , Feminino , Masculino , Reprodução , Comportamento Sexual Animal
3.
BMC Genomics ; 20(1): 732, 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606030

RESUMO

BACKGROUND: Relationships between an organism and its environment can be fundamental in the understanding how populations change over time and species arise. Local ecological conditions can shape variation at multiple levels, among these are the evolutionary history and trajectories of coding genes. This study examines the rate of molecular evolution at protein-coding genes throughout the genome in response to host adaptation in the cactophilic Drosophila mojavensis. These insects are intimately associated with cactus necroses, developing as larvae and feeding as adults in these necrotic tissues. Drosophila mojavensis is composed of four isolated populations across the deserts of western North America and each population has adapted to utilize different cacti that are chemically, nutritionally, and structurally distinct. RESULTS: High coverage Illumina sequencing was performed on three previously unsequenced populations of D. mojavensis. Genomes were assembled using the previously sequenced genome of D. mojavensis from Santa Catalina Island (USA) as a template. Protein coding genes were aligned across all four populations and rates of protein evolution were determined for all loci using a several approaches. CONCLUSIONS: Loci that exhibited elevated rates of molecular evolution tend to be shorter, have fewer exons, low expression, be transcriptionally responsive to cactus host use and have fixed expression differences across the four cactus host populations. Fast evolving genes were involved with metabolism, detoxification, chemosensory reception, reproduction and behavior. Results of this study give insight into the process and the genomic consequences of local ecological adaptation.


Assuntos
Cactaceae/parasitologia , Proteínas de Drosophila/genética , Drosophila/fisiologia , Sequenciamento Completo do Genoma/métodos , Adaptação Fisiológica , Animais , Drosophila/genética , Ecossistema , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Estados Unidos
4.
BMC Evol Biol ; 18(1): 144, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236055

RESUMO

BACKGROUND: Adaptation to new hosts in phytophagous insects often involves mechanisms of host recognition by genes of sensory pathways. Most often the molecular evolution of sensory genes has been explained in the context of the birth-and-death model. The role of positive selection is less understood, especially associated with host adaptation and specialization. Here we aim to contribute evidence for this latter hypothesis by considering the case of Drosophila mojavensis, a species with an evolutionary history shaped by multiple host shifts in a relatively short time scale, and its generalist sister species, D. arizonae. RESULTS: We used a phylogenetic and population genetic analysis framework to test for positive selection in a subset of four chemoreceptor genes, one gustatory receptor (Gr) and three odorant receptors (Or), for which their expression has been previously associated with host shifts. We found strong evidence of positive selection at several amino acid sites in all genes investigated, most of which exhibited changes predicted to cause functional effects in these transmembrane proteins. A significant portion of the sites identified as evolving positively were largely found in the cytoplasmic region, although a few were also present in the extracellular domains. CONCLUSIONS: The pattern of substitution observed suggests that some of these changes likely had an effect on signal transduction as well as odorant recognition and protein-protein interactions. These findings support the role of positive selection in shaping the pattern of variation at chemosensory receptors, both during the specialization onto one or a few related hosts, but as well as during the evolution and adaptation of generalist species into utilizing several hosts.


Assuntos
Adaptação Fisiológica/genética , Drosophila/genética , Ecologia , Genes de Insetos , Variação Genética , Receptores Odorantes/genética , Seleção Genética , Análise de Variância , Animais , Códon/genética , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Geografia , Filogenia
5.
Mol Ecol ; 24(20): 5186-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26384860

RESUMO

Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.


Assuntos
Adaptação Biológica/genética , Cactaceae , Drosophila/genética , Genética Populacional , Transcriptoma , Animais , Arizona , California , Genes de Insetos , Larva , Análise de Sequência de RNA
6.
Mol Ecol ; 24(15): 3810-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033315

RESUMO

One of the fundamental goals in evolution and ecology is to identify the genetic basis of adaptive phenotypes. Unfortunately, progress towards this goal has been hampered by a lack of genetic tools available for nonmodel organisms. The exciting new development of the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) genome-editing system now promises to transform the field of molecular ecology by providing a versatile toolkit for manipulating the genome of a wide variety of organisms. Here, we review the numerous applications of this groundbreaking technology and provide a practical guide to the creation of genetic knockouts, transgenics and other related forms of gene manipulation in nonmodel organisms. We also specifically discuss the potential uses of the CRISPR/Cas9 system in ecological and evolutionary studies, which will further advance the field towards the long-standing goal of connecting genotypes, phenotypes and fitness.


Assuntos
Sistemas CRISPR-Cas , Aptidão Genética , Genótipo , Fenótipo , Evolução Biológica , Ecologia/métodos , Técnicas de Inativação de Genes , Engenharia Genética/métodos , Vetores Genéticos , Organismos Geneticamente Modificados
7.
Adv Exp Med Biol ; 781: 233-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277303

RESUMO

Advances in next-generation sequencing technologies have liberated our dependency on model laboratory species for answering genomic and transcriptomic level questions. These new techniques have dramatically expanded our breadth of study organisms and have allowed the analysis of species from diverse ecological environments. One such species is the cactophilic Drosophila mojavensis that inhabits the deserts of western North America. These insects feed and develop in the necrotic cacti, feeding largely on the microflora of the necrotic plant tissues. Drosophila mojavensis is composed of four geographically and ecologically separated populations. Each population (Baja California peninsula, mainland Sonoran Desert, Mojave Desert and Santa Catalina Island) utilizes the necrotic tissues of distinct cactus species. The differences in the nutritional and chemical composition of the necroses include a set of toxic compounds to which resident population must adapt. These ecological differences have facilitated many of the life history, behavior, physiological and genetic differences between the cactus host populations. Genomic resources have allowed investigators to examine the genomic and transcriptional level changes associated with the local adaptation of the four D. mojavensis populations, thereby providing further understanding of the genetic mechanism of adaptation and its role in the divergence of ecologically distinct populations.


Assuntos
Adaptação Biológica/genética , Genoma de Inseto/fisiologia , Metagenômica , Animais , Cactaceae , Drosophila , América do Norte
8.
Proc Natl Acad Sci U S A ; 108(19): 7878-83, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518862

RESUMO

In internally fertilizing organisms, mating involves a series of highly coordinated molecular interactions between the sexes that occur within the female reproductive tract. In species where females mate multiply, traits involved in postcopulatory interactions are expected to evolve rapidly, potentially leading to postmating-prezygotic (PMPZ) reproductive isolation between diverging populations. Here, we investigate the postmating transcriptional response of the lower reproductive tract of Drosophila mojavensis females following copulation with either conspecific or heterospecific (Drosophila arizonae) males at three time points postmating. Relatively few genes (15 total) were differentially regulated in the female lower reproductive tract in response to conspecific mating. Heterospecifically mated females exhibited significant perturbations in the expression of the majority of these genes, and also down-regulated transcription of a number of others, including several involved in mitochondrial function. These striking regulatory differences indicate failed postcopulatory molecular interactions between the sexes consistent with the strong PMPZ isolation observed for this cross. We also report the transfer of male accessory-gland protein (Acp) transcripts from males to females during copulation, a finding with potentially broad implications for understanding postcopulatory molecular interactions between the sexes.


Assuntos
Drosophila/genética , Drosophila/fisiologia , Animais , Sequência de Bases , Copulação/fisiologia , Primers do DNA/genética , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Genitália Feminina/fisiologia , Genitália Masculina/fisiologia , Masculino , Preferência de Acasalamento Animal/fisiologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transcrição Gênica
9.
Ecol Evol ; 14(3): e10979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476697

RESUMO

The assembly of genomes from pooled samples of genetically heterogenous samples of conspecifics remains challenging. In this study, we show that high-quality genome assemblies can be produced from samples of multiple wild-caught individuals. We sequenced DNA extracted from a pooled sample of conspecific herbivorous insects (Hemiptera: Miridae: Tupiocoris notatus) acquired from a greenhouse infestation in Tucson, Arizona (in the range of 30-100 individuals; 0.5 mL tissue by volume) using PacBio highly accurate long reads (HiFi). The initial assembly contained multiple haplotigs (>85% BUSCOs duplicated), but duplicate contigs could be easily purged to reveal a highly complete assembly (95.6% BUSCO, 4.4% duplicated) that is highly contiguous by short-read assembly standards (N 50 = 675 kb; Largest contig = 4.3 Mb). We then used our assembly as the basis for a genome-guided differential expression study of host plant-specific transcriptional responses. We found thousands of genes (N = 4982) to be differentially expressed between our new data from individuals feeding on Datura wrightii (Solanaceae) and existing RNA-seq data from Nicotiana attenuata (Solanaceae)-fed individuals. We identified many of these genes as previously documented detoxification genes such as glutathione-S-transferases, cytochrome P450s, and UDP-glucosyltransferases. Together our results show that long-read sequencing of pooled samples can provide a cost-effective genome assembly option for small insects and can provide insights into the genetic mechanisms underlying interactions between plants and herbivorous pests.

10.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790342

RESUMO

Although RNA is found in the seminal fluid of diverse organisms, it is unknown whether this RNA is functional within females. Here, we develop an experimental proteomic method called VESPA (Variant Enabled SILAC Proteomic Analysis) to test the hypothesis that Drosophila male seminal fluid RNA is translated by females. We find strong evidence for 67 male-derived, female-translated proteins (mdFTPs) in female lower reproductive tracts at six hours postmating, many with predicted functions relevant to reproduction. Gene knockout experiments indicate that genes coding for mdFTPs play diverse roles in postmating interactions, with effects on fertilization efficiency, and the formation and persistence of the insemination reaction mass, a trait hypothesized to be involved in sexual conflict. These findings advance our understanding of reproduction by revealing a novel mechanism of postmating molecular interactions between the sexes that strengthens and extends male influences on reproductive outcomes in previously unrecognized ways. Given the diverse species known to carry RNA in seminal fluid, this discovery has broad significance for understanding molecular mechanisms of cooperation and conflict during reproduction.

11.
Mol Ecol ; 21(10): 2428-39, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22512269

RESUMO

In the presence of environmental change, natural selection can shape the transcriptome. Under a scenario of environmental change, genotypes that are better able to modulate gene expression to maximize fitness will tend to be favoured. Therefore, it is important to examine gene expression at the population level to distinguish random or neutral gene expression variation from the pattern produced by natural selection. This study investigates the natural variation in transcriptional response to a cactus host shift utilizing the mainland Sonora population of Drosophila mojavensis. Drosophila mojavensis is a cactophilic species composed of four cactus host populations endemic to the deserts of North America. Overall, the change in cactus host was associated with a significant reduction in larval viability as well as the differential expression of 21% of the genome (3109 genes). Among the genes identified were a set of genes previously known to be involved in xenobiotic metabolism, as well as genes involved in cellular energy production, oxidoreductase/carbohydrate metabolism, structural components and mRNA binding. Interestingly, of the 3109 genes whose expression was affected by host use, there was a significant overrepresentation of genes that lacked an orthologous call to the D. melanogaster genome, suggesting the possibility of an accelerated rate of evolution in these genes. Of the genes with a significant cactus effect, the majority, 2264 genes, did not exhibit a significant cactus-by-line interaction. This population-level approach facilitated the identification of genes involved in past cactus host shifts.


Assuntos
Cactaceae , Drosophila/genética , Genética Populacional , Transcriptoma , Animais , Drosophila/fisiologia , Feminino , Genes de Insetos , Especificidade de Hospedeiro , Análise de Sequência com Séries de Oligonucleotídeos
12.
Sci Rep ; 12(1): 6332, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428855

RESUMO

Gene drives can be highly effective in controlling a target population by disrupting a female fertility gene. To spread across a population, these drives require that disrupted alleles be largely recessive so as not to impose too high of a fitness penalty. We argue that this restriction may be relaxed by using a double gene drive design to spread a split binary expression system. One drive carries a dominant lethal/toxic effector alone and the other a transactivator factor, without which the effector will not act. Only after the drives reach sufficiently high frequencies would individuals have the chance to inherit both system components and the effector be expressed. We explore through mathematical modeling the potential of this design to spread dominant lethal/toxic alleles and suppress populations. We show that this system could be implemented to spread engineered seminal proteins designed to kill females, making it highly effective against polyandrous populations.


Assuntos
Tecnologia de Impulso Genético , Alelos , Feminino , Humanos
13.
Biol Open ; 11(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36285699

RESUMO

Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we simulated the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) in a temperature- and light-controlled chamber, to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the adult survivorship of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species.


Assuntos
Adaptação Fisiológica , Drosophila , Animais , Drosophila/fisiologia , Estações do Ano , Aclimatação
14.
Commun Biol ; 5(1): 842, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986208

RESUMO

Postmating-prezygotic (PMPZ) reproductive isolation is hypothesized to result from divergent coevolutionary trajectories of sexual selection and/or sexual conflict in isolated populations. However, the genetic basis of PMPZ incompatibilities between species is poorly understood. Here, we use a comparative framework to compare global gene expression in con- and heterospecifically mated Drosophila mojavensis and D. arizonae female reproductive tracts. We find striking divergence between the species in the female postmating transcriptional response to conspecific mating, including differences in differential expression (DE), alternative splicing (AS), and intron retention (IR). As predicted, heterospecific matings produce disrupted transcriptional profiles, but the overall patterns of misregulation are different between the reciprocal crosses. Moreover, we find a positive correlation between postmating transcriptional divergence between species and levels of transcriptional disruption in heterospecific crosses. This result indicates that mating responsive genes that have diverged more in expression also have more disrupted transcriptional profiles in heterospecifically mated females. Overall, our results provide insights into the evolution of PMPZ isolation and lay the foundation for future studies aimed at identifying specific genes involved in PMPZ incompatibilities and the evolutionary forces that have contributed to their divergence in closely related species.


Assuntos
Drosophila , Isolamento Reprodutivo , Animais , Drosophila/genética , Feminino , Reprodução/genética
15.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234875

RESUMO

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Estudo de Associação Genômica Ampla , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , Mariposas/metabolismo , Plantas Geneticamente Modificadas/genética , Zea mays/genética
16.
J Nutr ; 141(6): 1127-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21525254

RESUMO

We examined the effects of 3 diets differing in their relative levels of sugar and protein on development and metabolic pools (protein, TG, and glycogen) among sets of isofemale lines of 2 ecologically distinct Drosophila species, D. melanogaster and D. mojavensis. Our high protein:sugar ratio diet contained 7.1% protein and 17.9% carbohydrate, the EPS diet was 4.3% protein and 21.2% carbohydrate, and the LPS was only 2.5% protein and 24.6% carbohydrate. Larvae of D. melanogaster, a generalist fruit breeder, were able to survive on all 3 diets, although all 3 metabolic pools responded with significant diet and diet × line interactions. Development was delayed by the diet with the most sugar relative to protein. The other species, D. mojavensis, a cactus breeder ecologically unaccustomed to encountering simple sugars, completely failed to survive when fed the diet with the highest sugar and showed very poor survival even with the diet with equal parts of protein and sugar. Furthermore, the D. mojavensis adult metabolic pools of protein, TG, and glycogen significantly differed from those of D. melanogaster adults fed the identical diet. Thus, considerable within- and between-species differences exist in how diets are metabolized. Given that the genomes of both of these Drosophila species have been sequenced, these differences and their genetic underpinnings hold promise for understanding human responses to nutrition and for developing strategies for dealing with metabolic disease.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Proteínas de Drosophila/metabolismo , Ecossistema , Feminino , Glicogênio/metabolismo , Longevidade , Especificidade da Espécie , Triglicerídeos/metabolismo
17.
Mol Ecol Resour ; 20(5): 1277-1293, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32329220

RESUMO

The emergence of third-generation sequencing (3GS; long-reads) is bringing closer the goal of chromosome-size fragments in de novo genome assemblies. This allows the exploration of new and broader questions on genome evolution for a number of nonmodel organisms. However, long-read technologies result in higher sequencing error rates and therefore impose an elevated cost of sufficient coverage to achieve high enough quality. In this context, hybrid assemblies, combining short-reads and long-reads, provide an alternative efficient and cost-effective approach to generate de novo, chromosome-level genome assemblies. The array of available software programs for hybrid genome assembly, sequence correction and manipulation are constantly being expanded and improved. This makes it difficult for nonexperts to find efficient, fast and tractable computational solutions for genome assembly, especially in the case of nonmodel organisms lacking a reference genome or one from a closely related species. In this study, we review and test the most recent pipelines for hybrid assemblies, comparing the model organism Drosophila melanogaster to a nonmodel cactophilic Drosophila, D. mojavensis. We show that it is possible to achieve excellent contiguity on this nonmodel organism using the dbg2olc pipeline.


Assuntos
Drosophila/genética , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cromossomos de Insetos , Drosophila melanogaster/genética , Análise de Sequência de DNA , Software
18.
Genome Biol Evol ; 12(8): 1407-1418, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653899

RESUMO

Natural selection on gene expression was originally predicted to result primarily in cis- rather than trans-regulatory evolution, due to the expectation of reduced pleiotropy. Despite this, numerous studies have ascribed recent evolutionary divergence in gene expression predominantly to trans-regulation. Performing RNA-seq on single isofemale lines from genetically distinct populations of the cactophilic fly Drosophila mojavensis and their F1 hybrids, we recapitulated this pattern in both larval brains and whole bodies. However, we demonstrate that improving the measurement of brain expression divergence between populations by using seven additional genotypes considerably reduces the estimate of trans-regulatory contributions to expression evolution. We argue that the finding of trans-regulatory predominance can result from biases due to environmental variation in expression or other sources of noise, and that cis-regulation is likely a greater contributor to transcriptional evolution across D. mojavensis populations. Lastly, we merge these lines of data to identify several previously hypothesized and intriguing novel candidate genes, and suggest that the integration of regulatory and population-level transcriptomic data can provide useful filters for the identification of potentially adaptive genes.


Assuntos
Evolução Biológica , Drosophila/genética , Regulação da Expressão Gênica/genética , Seleção Genética , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Feminino , Genótipo , Larva/metabolismo , Transcriptoma
19.
Sci Adv ; 6(25): eaba5279, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32704542

RESUMO

Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner.


Assuntos
Drosophila melanogaster , Atrativos Sexuais , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Masculino , Condutos Olfatórios , Feromônios/genética , Feromônios/metabolismo , Atrativos Sexuais/fisiologia , Comportamento Sexual Animal/fisiologia
20.
Genetics ; 178(2): 1073-83, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245335

RESUMO

Drosophila mojavensis is a cactophilic fly endemic to the northwestern deserts of North America. This species includes four genetically isolated cactus host races each individually specializing on the necrotic tissues of a different cactus species. The necrosis of each cactus species provides the resident D. mojavensis populations with a distinct chemical environment. A previous investigation of the role of transcriptional variation in the adaptation of D. mojavensis to its hosts produced a set of candidate loci that are differentially expressed in response to host shifts, and among them was glutathione S-transferase D1 (GstD1). In both D. melanogaster and Anopheles gambiae, GstD1 has been implicated in the resistance of these species to the insecticide dichloro-diphenyl-trichloroethane (DDT). The pattern of sequence variation of the GstD1 locus from all four D. mojavensis populations, D. arizonae (sister species), and D. navojoa (outgroup) has been examined. The data suggest that in two populations of D. mojavensis GstD1 has gone through a period of adaptive amino acid evolution. Further analyses indicate that of the seven amino acid fixations that occurred in the D. mojavensis lineage, two of them occur in the active site pocket, potentially having a significant effect on substrate specificity and in the adaptation to alternative cactus hosts.


Assuntos
Drosophila/enzimologia , Drosophila/genética , Evolução Molecular , Glutationa Transferase/genética , Aclimatação , Animais , Clima Desértico , Drosophila/classificação , Proteínas de Drosophila/genética , Variação Genética , Geografia , México , Dados de Sequência Molecular , Filogenia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA